• Title/Summary/Keyword: urban air

Search Result 1,526, Processing Time 0.025 seconds

Study on Field Observations of the Thermal Environment in the Downtown Location and the Outskirt Site (하절기 도심과 외곽지의 열특성 비교 관측)

  • Jung, Im-Soo;Choi, Dong-Ho;Lee, Bu-Yong
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.21-25
    • /
    • 2009
  • This study is about heat island as one of the urban climate variation factors in urbanized modern society, which compared and observed the thermal characteristics both the downtown location and the outskirt site in summer. The diurnal air temperature range at each point is $12.6^{\circ}C$ in the downtown location and $14.3^{\circ}C$ in the outskirt site, so, it was found that the diurnal air temperature range in the outskirt site was $1.7^{\circ}C$ higher than in the downtown location. There was 20 minutes difference to reach the highest temperature between globe temperature and air temperature in the downtown location, however, the time spent to reach the highest temperature between globe temperature and air temperature in the outskirt site was the same. When we compared the globe temperature between the downtown location and outskirt site, we found that the temperature in the outskirt site was lower than in the downtown location after sunset due to the sudden temperature drops, although the exposed time to insolation in the outskirt site is longer. The average of globe temperature difference on the sample days was $1.1^{\circ}C$, the average of surface temperature difference on the sample days was $1.0^{\circ}C$, and the average of air temperature difference on the sample days was $2.0^{\circ}C$ Thus, it was found that the average of air temperature difference was higher than the average of globe temperature and the average of surface temperature. The result of this study is that the urban environment factors have more effect on the air temperature difference than globe temperature and surface temperature.

  • PDF

Prerequisites for Realizing Urban Air Traffic (UAM) and Personal Air Vehicle (PAV) (도심항공교통(UAM)과 개인용 비행체(PAV) 실현화를 위한 선행 조건에 대한 전망)

  • Choi, Jeongho;Choi, Young-Moon
    • Journal of the Korea Convergence Society
    • /
    • v.11 no.12
    • /
    • pp.147-153
    • /
    • 2020
  • This study is aimed at a basic infrastructure for realizing urban air mobility (UAM) and personal air vehicle (PAV), which have recently been high interest as new means of transportation. The development of UAM and PAV technologies is a field of a high added value that the world is competitively pushing for the world. However, the three most fundamental aspects are the establishing an aviation certification system, finding reliable manufacturers having advanced technical abilities, and the training/securing of professional manpower. Above all, the aviation certification system will be established for the first time. Based on the certification system, it will be possible to realize the government's policy goal of introducing new means of transportation, including the production of aircraft and to realize commercialization that meets international standards that satisfy conformity and compliance. In addition, finding reliable manufacturers, fostering professionals, and establishing an educating system for stable supplying of the professionals are main projects to become a leading country in the field.

Changes in Air Quality through the Application of Three Types of Green-Wall Model within Classrooms (교사 내 플랜트 모델 유형별 적용에 따른 공기질 변화)

  • Ho-Hyeong Yang;Hyung-Joo Kim;Sung-Won Bang;Heun-Woo Cho;Hyeong-Seok Lee;Seung-Won Han;Kwang-Jin Kim;Ho-Hyun Kim
    • Journal of Environmental Health Sciences
    • /
    • v.49 no.6
    • /
    • pp.295-304
    • /
    • 2023
  • Background: Adolescents are relatively more sensitive than adults to exposure to indoor pollutants. The indoor air quality in classrooms where students spend time together must therefore be managed at a safe level because it can affect the health of students. Objectives: In this study, three types of green-wall models were applied to classrooms where students spend a long time in a limited space, and the resulting effects on reducing PM were evaluated. Methods: In the middle school classrooms which were selected as the experimental subjects, IoT-based indoor air quality monitoring equipment was installed for real-time monitoring. Three types of plant models (passive, active, and active+light) were installed in each classroom to evaluate the effects on improving indoor air quality. Results: The concentration of PM in the classroom is influenced by outdoor air quality, but repeated increases and decreases in concentration were observed due to the influence of students' activities. There was a PM reduction effect by applying the green-wall model. There was a difference in PM reduction efficiency depending on the type of green-wall model, and the reduction efficiency of the active model was higher than the passive model. Conclusions: The active green-wall model can be used as an efficient method of improving indoor air quality. Additionally, more research is needed to increase the efficiency of improving indoor air quality by setting conditions that can stimulate the growth of each type of plant.

UAM Traffic Flow Management Based on Milestone in Collaborative Decision-Making (협력적 의사결정체계(CDM) 마일스톤 기반 도심항공교통(UAM) 흐름관리)

  • Do-hyun Kim;Hyo-seok Chang
    • Journal of Advanced Navigation Technology
    • /
    • v.28 no.4
    • /
    • pp.436-441
    • /
    • 2024
  • Urban air mobility (UAM) is an innovative air traffic management system that utilizes electric vertical take off and landing aircraft(eVTOL) to transport passengers and cargo in urban areas. The corridor can be defined as the airspace that the vehicle operates in and must be collaboratively managed. For the stable operation of UAM, it is essential to have strategic separation and a collaborative decision-making(CDM) system for cooperation and coordination among stakeholders. This study examines the application of time-based milestones from traditional air traffic flow management to the UAM system to ensure safe traffic volume and optimize air traffic flow. For traffic flow management, the milestone time information is categorized into a total of 13 key milestone time indicators based on the UAM movement status, and the sharing entities providing each time indicator and the flow of milestones are defined. Emphasizing the need for a CDM to balance UAM traffic and capacity, sharing and managing milestone information among stakeholders is expected to improve UAM aircraft departure flow and enhance operational efficiency.

A Study on the Application Cases of Smart Environment Management in Urban Area (도시지역의 스마트 환경관리 적용 사례에 대한 고찰)

  • Park, Chanjin
    • Journal of Urban Science
    • /
    • v.11 no.2
    • /
    • pp.31-44
    • /
    • 2022
  • In this study, smart environmental management, which is an essential element for building a sustainable city, was studied. Incheon area in the metropolitan area was selected as a research subject, the recent atmospheric environment was reviewed comprehensively, and the main air quality policies of Incheon city were summarized. The smart environment management application cases were organized and analyzed to summarize the results. Based on this study, smart environment management plans for the creation of a smart city in an urban area were suggested.

Factors Affecting Temperature of Urban Parks (도시공원의 기온에 영향을 미치는 요인)

  • 윤용한;송태갑
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.28 no.2
    • /
    • pp.39-48
    • /
    • 2000
  • The purpose of this study is to investigate the factors affecting temperature of urban parks to grasp the relationship between the land coverage in open space as well as the forest condition and decreasing city temperature by difference of purposed are. Futhermore, this research interpreted the relationship between wind direction, air temperature, the land coverage of the green space, the number of tree, green volume, height of tree and the mitigation of city temperature with the revolution analysis. The result of this study is that cool air in open space move leeward and decreasing city temperature is influenced by the difference of the land coverage in open space. Specifically, in order of the arbo $r_{-a}$rbor in the forest zone, the increase of the number of trees was related with temperature surrounding significantly. This study found that the use possibility of the green volume was recognized as the index of the green volume relative to air temperature surrounding. Green space of the city control area is more effective decreasing temperature than that of housing zone.

  • PDF