• Title/Summary/Keyword: uranium concentration

Search Result 201, Processing Time 0.025 seconds

Study on an Intermediate Compound Preparation for a HTGR Nuclear Fuel (고온가스로용 핵연료 중간화합물 제조에 대한 연구)

  • Kim, Yeon-Ku;Suhr, Dong-Soo;Jeong, Kyung-Chai;Oh, Seung-Chul;Cho, Moon-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.11
    • /
    • pp.725-733
    • /
    • 2008
  • In this study the preparation method of the spherical ADU droplets, intermediate compound of a HTGR nuclear fuel, was detailed-reviewed and then, the characteristics on an ageing and a washing steps among the wet process and the thermal treatment process on the died-ADU${\rightarrow}UO_3$ conversion with the high temperature furnaces were studied. The key parameters for spherical droplets forming are a precise control of feed rate and a suitable viscosity value selection of a broth solution. Also, a harmony of vibrating frequency and amplitude of a vibration dropping system are important factor. In our case, an uranium concentration is $0.5{\sim}0.7mol/l$, viscosity is $50{\sim}80$ centi-Poise, vibration frequency is about 100Hz. In thermal treatment for no crack spherical $UO_3$ particle, the heating rate in the calcination must be operated below $2^{\circ}C$/min, in air atmosphere.

Interaction between UN and CdCl2 in molten LiCl-KCl eutectic. II. Experiment at 1023 K

  • Zhitkov, Alexander;Potapov, Alexei;Karimov, Kirill;Kholkina, Anna;Shishkin, Vladimir;Dedyukhin, Alexander;Zaykov, Yury
    • Nuclear Engineering and Technology
    • /
    • v.54 no.2
    • /
    • pp.653-660
    • /
    • 2022
  • The interaction between UN and CdCl2 in the LiCl-KCl molten eutectic was studied at 1023 K. The chlorination was monitored by sampling and recording the redox potential of the medium. At 1023 K the chlorination of UN with cadmium chloride in the molten LiCl-KCl eutectic proceeds completely and results in the formation of uranium chlorides. The melts of the LiCl-KCl-UCl3 or LiCl-KCl-UCl4 compositions can be obtained by the end of experiment depending on the presence of metallic cadmium in the reaction zone. The higher the concentration of the chlorinating agent, the faster the reaction rate. At [CdCl2]/[UN] = 1.65 (10% excess) the reaction proceeds to completion in about 7.5 h. At [CdCl2]/[UN] = 7 the complete chlorination takes 2.5-3 h.

Synthesis of ion Exchange Fiber Containing Amidoxime and Phosphoric Acid Groups and Its Uranium Adsorption Properties (아미드옥심기와 인산기가 함유된 이온 교환 섬유의 합성 및 우라늄 흡착 특성)

  • 황택성;박진원
    • Polymer(Korea)
    • /
    • v.27 no.3
    • /
    • pp.242-248
    • /
    • 2003
  • PP-g-(AN/Sty) was synthesized by grafting with acrylonitrile (AN) and styrene (Sty) onto PP staple fiber using an electron beam accelerator and followed by amidoximination and phosphorylation. Mole fraction of AN in the graft chain increased with the increase of the AN content in the monomer mixture. The highest AN grafting yield of 45% was obtained at a monomer ratio of 40 vol% AN/60 vol% Sty. Mole fraction of AN in the graft chain decreased with the increase of methanol amount used its solvent. As reaction temperature increased, the grafting yield of copolymer increased and reached equilibrium at 50$^{\circ}C$. Amount of amidoxime group in fibrous ion exchanger was increased as increasing amount of hydroxylamine, and the maximum content of amidoxime group was observed at 5.8 mmol/g with the 9 wt% hydroxylamine concentration. Content of phosphorous group in fibrous ion exchanger increased up to 0.5 N phosphoric acid concentration, and then leveled off. The adsorption ability of the copolymer for uranyl ion by the chelating adsorbents was in the following order : bifunctional PP-g-(AN/sty) > amidoximated PP-g-(AN/Sty) > phosphorylated PP-g-(AN/Sty).

A comparative study on the impact of Gd2O3 burnable neutron absorber in UO2 and (U, Th)O2 fuels

  • Uguru, Edwin Humphrey;Sani, S.F.Abdul;Khandaker, Mayeen Uddin;Rabir, Mohamad Hairie;Karim, Julia Abdul
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1099-1109
    • /
    • 2020
  • The performance of gadolinium burnable absorber (GdBA) for reactivity control in UO2 and (U, Th)O2 fuels and its impact on spent fuel characteristics was performed. Five fuel assemblies: one without GdBA fuel rod and four each containing 16, 24, 34 and 44 GdBA fuel rods in both fuels were investigated. Reactivity swing in all the FAs with GdBA rods in UO2 fuel was higher than their counterparts with similar GdBA fuel rods in (U, Th)O2 fuel. The excess reactivity in all FAs with (U, Th)O2 fuel was higher than UO2 fuel. At the end of single discharge burn-up (~ 49.64 GWd/tHM), the excess reactivity of (U, Th) O2 fuel remained positive (16,000 pcm) while UO2 fuel shows a negative value (-6,000 pcm), which suggest a longer discharge burn-up in (U, Th)O2 fuel. The concentration of plutonium isotopes and minor actinides were significantly higher in UO2 fuel than in (U, Th)O2 fuel except for 236Np. However, the concentration of non-actinides (gadolinium and iodine isotopes) except for 135Xe were respectively smaller in (U, Th)O2 fuel than in UO2 fuel but may be two times higher in (U, Th)O2 fuel due to its potential longer discharge burn-up.

Natural Reduction Characteristics of Radon in Drinking Groundwater (음용 지하수 중 라돈 자연저감 특성)

  • Noh, Hoe-Jung;Jeong, Do-Hwan;Yoon, Jeong-Ki;Kim, Moon-Su;Ju, Byoung-Kyu;Jeon, Sang-Ho;Kim, Tae-Seung
    • Journal of Soil and Groundwater Environment
    • /
    • v.16 no.1
    • /
    • pp.12-18
    • /
    • 2011
  • To investigate the natural reduction characteristics of radon with a short half-life (3.82 day) in drinking Qgroundwater, we analyzed the changes of radon concentrations of groundwater, waters in storage tanks, and tap waters from the small-scale groundwater-supply systems (N = 301) by LSC (Liquid Scintillation Counter). We also analyzed the concentrations of uranium (half-life 4.5 billion years) in the waters by ICP/MS to compare with natural reduction of radon concentration. The radon concentrations of 68 groundwater-supply systems occupying 22.6% of the total samples exceeded the US EPA's Alternative Maximum Contaminant Level (AMCL : 4,000 pCi/L), with the average radon concentration of 7,316 pCi/L (groundwaters), 3,833 pCi/L (tank waters) and 3,407 pCi/L (tap waters). Compared to the radon levels of pumped groundwaters, those of tank and tap waters naturally reduced significantly down to about 50%. Especially, in case of 29 groundwater-supply systems with the groundwater radon concentrations of 4,000~6,000 pCi/L, average radon concentrations of the tank and tap waters naturally decreased down to the AMCL. Therefore this study implies that radon concentrations of drinking groundwater can be effectively reduced by sufficient storage and residence in tanks.

LOCAL BURNUP CHARACTERISTICS OF PWR SPENT NUCLEAR FUELS DISCHARGED FROM YEONGGWANG-2 NUCLEAR POWER PLANT

  • Ha, Yeong-Keong;Kim, Jung-Suck;Jeon, Young-Shin;Han, Sun-Ho;Seo, Hang-Seok;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.42 no.1
    • /
    • pp.79-88
    • /
    • 2010
  • Spent $UO_2$ nuclear fuel discharged from a nuclear power plant (NPP) contains fission products, U, Pu, and other actinides. Due to neutron capture by $^{238}U$ in the rim region and a temperature gradient between the center and the rim of a fuel pellet, a considerable increase in the concentration of fission products, Pu, and other actinides are expected in the pellet periphery of high burnup fuel. The characterization of the radial profiles of the various isotopic concentrations is our main concern. For an analysis, spent nuclear fuels originating from the Yeonggwang-2 pressurized water reactor (PWR) were chosen as the test specimens. In this work, the distributions of some actinide isotopes were measured from center to rim of the spent fuel specimens by a radiation shielded laser ablation inductively coupled plasma mass spectrometer (LA-ICP-MS) system. Sampling was performed along the diameter of the specimen by reducing the sampling intervals from 500 ${\mu}m$ in the center to 100 ${\mu}m$ in the pellet periphery region. It was observed that the isotopic concentration ratios for minor actinides in the center of the specimen remain almost constant and increase near the pellet periphery due to the rim effect apart from the $^{236}U$ to $^{235}U$ ratio, which remains approximately constant. In addition, the distributions of local burnup were derived from the measured isotope ratios by applying the relationship between burnup and isotopic ratio for plutonium and minor actinides calculated by the ORIGEN2 code.

Characteristics of Internal and External Exposure of Radon and Thoron in Process Handling Monazite (모나자이트 취급공정에서의 라돈 및 토론 노출 특성)

  • Chung, Eun Kyo
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.2
    • /
    • pp.167-175
    • /
    • 2019
  • Objectives: The purpose of this study was to evaluate airborne radon and thoron levels and estimate the effective doses of workers who made household goods and mattresses using monazite. Methods: Airborne radon and thoron concentrations were measured using continuous monitors (Rad7, Durridge Company Inc., USA). Radon and thoron concentrations in the air were converted to radon doses using the dose conversion factor recommended by the Nuclear Safety and Security Commission in Korea. External exposure to gamma rays was measured at the chest height of a worker from the source using real-time radiation instruments, a survey meter (RadiagemTM 2000, Canberra Industries, Inc., USA), and an ion chamber (OD-01 Hx, STEP Co., Germany). Results: When using monazite, the average concentration range of radon was $13.1-97.8Bq/m^3$ and thoron was $210.1-841.4Bq/m^3$. When monazite was not used, the average concentration range of radon was $2.6-10.8Bq/m^3$ and the maximum was $1.7-66.2Bq/m^3$. Since monazite has a higher content of thorium than uranium, the effects of thoron should be considered. The effective doses of radon and thoron as calculated by the dose conversion factor based on ICRP 115 were 0.26 mSv/yr and 0.76 mSv/yr, respectively, at their maximum values. The external radiation dose rate was $6.7{\mu}Sv/hr$ at chest height and the effective dose was 4.3 mSv/yr at the maximum. Conclusions: Regardless of the use of monazite, the total annual effective doses due to internal and external exposure were 0.03-4.42 mSv/yr. Exposures to levels higher than this value are indicated if dose conversion factors based on the recently published ICRP 137 are applied.

Measurement of Rn-222 Gas Concentration of Newly Constructed Apartment House in Gwangju Gwangsan-Gu (광주광역시 광산구 소재 신축 아파트 라돈가스 농도 계측)

  • Jang, Hee jun;Lee, Sang bock
    • Journal of the Korean Society of Radiology
    • /
    • v.9 no.4
    • /
    • pp.257-261
    • /
    • 2015
  • Radon is produced after the Uranium-238 and thorium-232 undergone radioactive decay process is a colorless, odorless inert gas is stored in a basement or an enclosed space. Building materials are made by a rock or soil materials. Form of radon gas is introduced into the lungs through the respiratory tract and deposited in the lungs or bronchial Daughter nuclides radon causes lung cancer. In this study, To subject the Constructed Apartment in Gwangju Gwangsan-Gu, the position is closed window and opened window was measured using a measuring instrument for radon. The measured results indicate that the measurement was carried out in concentrations of radon gas measured at Newly Constructed Apartment is low than United states in the radon concentration in air public 4 pCi called radon gas baseline maximum allowable concentrations. The exposure caused by radon concentration of new construction apartment when on the measurement results is expected to be insignificant. However, when radon gas like this is that it accumulates in the body and lungs get damaged due to exposure, such as lung cancer often open the windows to reduce the radon concentration measurements, such as in radiation protection aspects to the ventilation to reduce exposure it is considered necessary.

Characterization of the Behavior of Naturally Occurring Radioactive Elements in the Groundwater within the Chiaksan Gneiss Complex : Focusing on the Mineralogical Interpretation of Artificial Weathering Experiments (치악산 편마암 지질의 지하수 내 자연 방사성 원소의 거동 특성 연구: 인공풍화 실험을 통한 광물학적 해석)

  • Woo-Chun Lee;Sang-Woo Lee;Hyeong-Gyu Kim;Do-Hwan Jeong;Moon-Su Kim;Hyun-Koo Kim;Soon-Oh Kim
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.36 no.4
    • /
    • pp.289-302
    • /
    • 2023
  • The study area was Gangnim-myeon, Hoengseong-gun, Gangwon-do, composed of the Chiaksan gneiss complex, and it was revealed that the concentrations of uranium (U) and thorium (Th) within the groundwater of the study area exceeded their water quality standards. Hence, artificial weathering experiments were conducted to elucidate mineralogically the mechanisms of their leaching using drilling cores obtained from the corresponding groundwater aquifers. First of all, the mineralogical compositions of core samples were observed, and the results indicated that the content of clinochlore, a member of the chlorite group of minerals that can form through low- and intermediate-temperature metamorphisms, was relatively higher. In addition, the Th concentration was measured ten times higher than that of U. The results of artificial weathering experiments suggested that the Th concentrations gradually increased through the dissolution of radioactive-element-bearing minerals up to the first day, and then they tended to decrease. It could be attributed to the fact that Th was leached with the dissolution of thorite, which might be a secondary mineral, and then dissolved Th was re-precipitated as the various forms of salt, such as sulfate. Even though the U content was lower than that of Th in the core samples, the U concentration was one hundred times higher than that of Th after the weathering experiments. It is likely caused by the gradual dissolution and desorption of U included in intensively weathered thorite or adsorbed as a form of UO22+ on the mineral surface. In addition, the leaching tendency of U and Th was positively correlated with the bicarbonate concentration. However, the concentrations between U and Th in groundwater exhibited a relatively lower correlation, which might result from the fact that they occurred from different sources, as aforementioned. Among various kinetic models, the parabolic diffusion and pseudo-second-order kinetic models were confirmed to best fit the dissolution kinetics of both elements. The period that would be taken for the U concentration to exceed its drinking-water standard was inferred using the regressed parameters of the best-fitted models, and the duration of 29.4 years was predicted in the neutral-pH aquifers with relatively higher concentrations of HCO3, indicating that U could be relatively quickly leached out into groundwater.

Synthesis and Properties of Uranium Compounds (I). Salts of Bis(undecatungstophosphato)uranate(Ⅳ) Anion, $[U(PW_{11}O_{39})_2]^{10-}$ (우라늄 화합물의 합성과 성질에 관한 연구 (제1보). 비스(운데카텅스토포스파토)우라늄(IV) 산 이온, $[U(PW_{11}O_{39})_2]^{10-}$의 염)

  • Chul Wee Lee;Hyunsoo So
    • Journal of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.160-164
    • /
    • 1982
  • A guanidinium salt of $[U(PW_{11}O_{39})_2]^{10-}$, the solubility of which is adequate for crystal growing, has been synthesized. Using this salt or potassium salt, we have measured the stability of $[U(PW_{11}O_{39})_2]^{10-}$as a function of pH of the solution and found that the anion is stable for the pH range 3~7. We have developed a colorimetric method for determining the concentration of $U^{4+}$. In this method$PW_{11}O_{39}^{7-}$ is added to$U^{4+}$ in such a quantity that the mole ratio $PW_{11}O_{39}^{7-}/ U^{4+}$exceeds 2 and the intensity of the 22.7kK band (${\varepsilon}$1030 M-1cm-1) is measured. In order to develop a continuous method to recover uranium, we have determined the amount of recoverd$PW_{11}O_{39}^{7-}$ after decomposing $[U(PW_{11}O_{39})_2]^{10}$- by adding either a base or an oxidizing agent. The percentage of $PW_{11}O_{39}^{7-}$recovered was approximately 70% when a base was used and approximately 80% when$K_2S_2O_8$ was used. A colorimetric method for determining $PW_{11}O_{39}^{7-}$ has also been developed.

  • PDF