• 제목/요약/키워드: upwind scheme

검색결과 220건 처리시간 0.022초

물-기체 2상 유동 해석을 위한 Semi-Implicit 방법의 대류항에 대한 2차 정확도 확장 (IMPLEMENTATION OF A SECOND-ORDER INTERPOLATION SCHEME FOR THE CONVECTIVE TERMS OF A SEMI-IMPLICIT TWO-PHASE FLOW ANALYSIS SOLVER)

  • 조형규;이희동;박익규;정재준
    • 한국전산유체공학회지
    • /
    • 제14권4호
    • /
    • pp.13-22
    • /
    • 2009
  • A two-phase (gas and liquid) flow analysis solver, named CUPID, has been developed for a realistic simulation of transient two-phase flows in light water nuclear reactor components. In the CUPID solver, a two-fluid three-field model is adopted and the governing equations are solved on unstructured grids for flow analyses in complicated geometries. For the numerical solution scheme, the semi-implicit method of the RELAP5 code, which has been proved to be very stable and accurate for most practical applications of nuclear thermal hydraulics, was used with some modifications for an application to unstructured non-staggered grids. This paper is concerned with the effects of interpolation schemes on the simulation of two-phase flows. In order to stabilize a numerical solution and assure a high numerical accuracy, the second-order upwind scheme is implemented into the CUPID code in the present paper. Some numerical tests have been performed with the implemented scheme and the comparison results between the second-order and first-order upwind schemes are introduced in the present paper. The comparison results among the two interpolation schemes and either the exact solutions or the mesh convergence studies showed the reduced numerical diffusion with the second-order scheme.

정렬 및 비정렬 격자를 이용한 선체 주위 유동에서 TVD 기법이 공간 정확도에 미치는 영향 (Influence of TVD Schemes on the Spatial Accuracy of Turbulent Flows Around a Hull When Using Structured and Unstructured Grids)

  • 심민경;이상봉
    • 대한조선학회논문집
    • /
    • 제58권3호
    • /
    • pp.182-190
    • /
    • 2021
  • Computational simulations of turbulent flows around a model ship have been performed to investigate an influence of TVD schemes on the accuracy of advective terms associated with ship resistances. Several TVD schemes including upwind, second-order upwind, vanLeer, and QUICK as well as a nonTVD linear scheme were studied by examining temporal and spatial characteristics of accuracy transition in adjacent cells to the hull. Even though vanLeer scheme was the most accurate among TVD schemes in both structured and unstructured grid systems, the ratio of accuracy switch from 2nd order to 1st order in vanLeer scheme was considerable compared with the 2nd order linear scheme. Also, the accuracy transition was observed to be overally scattered in the unstructured grid while the accuracy transition in the structured grid appeared relatively clustered. It concluded that TVD schemes had to be carefully used in computational simulations of turbulent flows around a model ship due to the loss of accuracy despite its attraction of numerical stability.

Magnetohydrodynamics Code Basics

  • RYU DONGSU
    • 천문학회지
    • /
    • 제34권4호
    • /
    • pp.209-213
    • /
    • 2001
  • This paper describes the numerical solution to the hyperbolic system of magnetohydrodynamic (MHD) equations. First, by pointing out the approximations involved, the deal MHD equations are presented. Next, the MHD waves as well as the associated shocks and discontinuities, are presented. Then, based on the hyperbolicity of the ideal MHD equations, the application of upwind schemes, which have been developed for hydrodynamics, is discussed to solve the equations numerically. As an definite example, one and multi-dimensional codes based on the Total Variation Diminishing scheme are presented. The treatment in the multi-dimensional code, which maintains ${\nabla}{\cdot}$B = 0, is described. Through tests, the robustness of the upwind schemes for MHDs is demonstrated.

  • PDF

다양한 근사인수분해 알고리즘을 이용하여 압축성 유동장의 수렴성 및 유용성에 대한 연구 (A Numerical Study on Efficiency and Convergence for Various Implicit Approximate Factorization Algorithms in Compressible Flow Field.)

  • 권창오;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 추계 학술대회논문집
    • /
    • pp.17-22
    • /
    • 1999
  • Convergence characteristics and efficiency of three implicit approximate factorization schemes(ADI, DDADI and MAF) are examined using 2-Dimensional compressible upwind Navier-Stokes code. Second-order CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method with Fromm scheme is used for the right-hand side residual evaluation, while generally first-order upwind differencing is used for the implicit operator on the left-hand side. Convergence studies are performed using an example of the flow past a NACA0012 airfoil at steady transonic flow condition, i. e. Mach number 0.8 at $1.25^{\circ}$ angle of attack. The results were compared with other computational results in order to validate the current numerical analysis. The results from the implicit AF algorithms were compared well in low surface with the other computational results; however, not well in upper surface. It might be due to lack of the grid around the shock position. Because the algorithm minimizes the errors of the approximate decomposition, the improved convergence rate with MAF were observed.

  • PDF

Upwind Navier-Stokes 방법을 이용한 진동하는 익형 주위의 비정상 천음속 유동해석 (Unsteady Transonic Flow Analysis over an Oscillatory Airfoil using upwind Navier-Stokes Method)

  • 오태훈;김상덕;송동주
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 1999년도 춘계 학술대회논문집
    • /
    • pp.137-143
    • /
    • 1999
  • The unsteady transonic viscous flow has been analyzed over an oscillatory airfoil. The CSCM(Conservative Supra Characteristic Method) upwind flux difference splitting method and the iterative time marching scheme having first order accuracy in time and second to third order accuracy in space was applied on dynamic meshes. A steady flow field of Mach number 0.7 has been calculated for the verification of unsteady algorithm. The time-accurate unsteady calculations have been done for NACA 0012 airfoil oscillating around quarter chord about freestream Mach number 0.6 on dynamic meshes. The results have been compared with the AGARD Case 3 experimental data. The periodic characteristics have been compared with the experimental results.

  • PDF

NUMERICAL MODELING OF TWO-DIMENSIONAL ADVECTION-DISPERSION IN OPEN CHANNEL

  • Lee, Myung-Eun;Kim, Young-Han;Seo, Il-Won
    • Water Engineering Research
    • /
    • 제4권1호
    • /
    • pp.45-58
    • /
    • 2003
  • Two-dimensional depth-averaged advection-dispersion equation was simulated using FEM. In the straight rectangular channel, the advection-dispersion processes are simulated so that these results can be compared with analyti-cal solutions for the transverse line injection and the point injection. In the straight domain the standard Galerkin method with the linear basis function is found to be inadequate to the advection-dispersion analysis compared to the upwind finite element scheme. The experimental data in the S-curved channel were compared with the result by the numerical model using SUPG(Streamline upwind Petrov-Galerkin) method.

  • PDF

Numerical Model for Thermal Hydraulic Analysis in Cable-in-Conduit-Conductors

  • Wang, Qiuliang;Kim, Kee-Man;Yoon, Cheon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제14권9호
    • /
    • pp.985-996
    • /
    • 2000
  • The issue of quench is related to safety operation of large-scale superconducting magnet system fabricated by cable-in-conduit conductor. A numerical method is presented to simulate the thermal hydraulic quench characteristics in the superconducting Tokamak magnet system, One-dimensional fluid dynamic equations for supercritical helium and the equation of heat conduction for the conduit are used to describe the thermal hydraulic characteristics in the cable-in-conduit conductor. The high heat transfer approximation between supercritical helium and superconducting strands is taken into account due to strong heating induced flow of supercritical helium. The fully implicit time integration of upwind scheme for finite volume method is utilized to discretize the equations on the staggered mesh. The scheme of a new adaptive mesh is proposed for the moving boundary problem and the time term is discretized by the-implicit scheme. It remarkably reduces the CPU time by local linearization of coefficient and the compressible storage of the large sparse matrix of discretized equations. The discretized equations are solved by the IMSL. The numerical implement is discussed in detail. The validation of this method is demonstrated by comparison of the numerical results with those of the SARUMAN and the QUENCHER and experimental measurements.

  • PDF

2차원 포물형 반사경에 의한 충격파의 촛점형성에 대한 수치해석 (Numerical Analysis of Shock-Wave Focusing from a Two-Dimensional Parabolic Reflector)

  • 최환석;백제현
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.612-623
    • /
    • 1994
  • Shock-wave focusing from a two-dimensional parabolic reflector was simulated using an explicit finite volume upwind TVD scheme. Computations were performed for three different incident shock speeds of $M_s$ = 1.1, 1.2 and 1.3, corresponding to the relatively weak, intermediate, and strong shock waves, respectively. Numerical solutions nicely resolved all the waves evolving through the focusing process. As the incident shock strength increase, a transition was observed in the shock-fronts geometry that was caused by the change in the reflection type of converging shock fronts on the axis of symmetry, from regular-type to Mach-type reflection. The computed maximum on-axis pressure amplification and the trajectories of three-wave intersections showed good agreement with experimental results. The strong nonlinear effect near the focal region which determines the shock-fronts geometries at and behind the focus and at the same time confines the pressure amplification at the focus was clearly revealed from the present numerical simulation.

초음속 연소 탄체 가속기 내의 폭굉파 진행에 관한 수치해석 (Numerical Analysis of Detonation Wave Propagation in SCRam-Accelerator)

  • 최정열;정인석;이수갑
    • 한국연소학회지
    • /
    • 제1권1호
    • /
    • pp.83-91
    • /
    • 1996
  • A numerical study is carried out to examine the ignition and propagation process of detonation wave in SCRam-accelerator operating in superdetonative mode. The time accurate solution of Reynolds averaged Navier-Stokes equations for chemically reacting flow is obtained by using the fully implicit numerical method and the higher order upwind scheme. As a result, it is clarified that the ignition process has its origin to the hot temperature region caused by shock-boundary layer interaction at the shoulder of projectile. After the ignition, the oblique detonation wave is generated and propagates toward the inlet while constructing complex shock-shock interaction and shock-boundary layer interaction. Finally, a standing oblique detonation wave is formed at the conical ramp.

  • PDF

다양한 $\kappa-\varepsilon$ 난류모델에 의한 단이 진 벽면 분류에 대한 수치해 (Numeical Analysis on wall-Attaching Offset Jet with Various Turbulent $\kappa-\varepsilon$ Models)

  • 윤순현
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권2호
    • /
    • pp.216-225
    • /
    • 1999
  • Four turbulent $k-{varepsilon}$models(i.e standard model modified models with streamline curvature modification and/or preferential dissipation modification) are applied in order to analyze the tur-bulent flow of wall-attaching offset jet. The upwind numerical scheme was adopted in the present analyses. The streamline curvature modification results in slightly better prediction while the preferential dissipation modification does not. The obtained analytic results will be used as refer-ences for further study regarding Reynolds stress model. In addition this paper introduced a method of increasing nozzle outlet velocity gradually for numercal convergence. Even though the method was simple it was efficient in view of convergent speed CPU running time computer memory storage programming etc.

  • PDF