• Title/Summary/Keyword: upwind scheme

Search Result 221, Processing Time 0.023 seconds

The Effect of Wind Force on Stability of Agricultural Structures - Numerical Calculation of Wind Pressure Coefficients - (풍하중이 농업시설물의 구조적 안정성에 미치는 영향 -수치해석에 의한 풍력계수분포 산정-)

  • 최홍림;손정익
    • Journal of Bio-Environment Control
    • /
    • v.3 no.1
    • /
    • pp.10-19
    • /
    • 1994
  • Wind load is known to be one of major forces to influence the stability of agricultural structures. General flow fields were calculated to determine flow characteristics over the envelop of the following three types of greenhouses with arched roof : single span, twin span greenhouses, and two single span greenhouses apart 3m inbetween. Pressure coefficients along the envelop of greenhouse were numerically calculated by the k-$\varepsilon$ turbulence model, which lead to determine wind forces on it. Curvilinear coordinate for an arched roof and the upwind scheme were adopted for the study. The calculated pressure coefficients were validated with the avaliable data of Japanese Standard and NGAM Standard. The Magnitude of calculated forces over the envelop was not in good accordance with data except the windward wall. Even tile data of Japanese and NGAM Standard for validation deviated a lot from each other in quantity and quality. Such discrepancy may be attributed to different geometric and/or flow configuration conditions for experiments, or the insenstivity of the k-$\varepsilon$ turbulence model to recirculation flow.

  • PDF

A Numerical Study on the Transmission of Thermo-Acoustic Wave Induced by Step Pulsed Heating in an Enclosure (제한공간내 펄스가열에 기인한 열음향파의 전달특성에 관한 수치적 연구)

  • 황인주;김윤제
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.14 no.11
    • /
    • pp.914-922
    • /
    • 2002
  • Thermo-acoustic waves can be thermally generated in a compressible flow field by rapid heating and cooling, and chemical reaction near the boundary walls. This mechanism is very important in the space environment in which natural convection does not exist. Also this may be a significant factor for heat transfer when the fluids are close to the thermodynamic critical point. In this study, the generation and transmission characteristics of thermo-acoustic waves in an air-filled confined domain with two-step pulsed heating are studied numerically. The governing equations are discretized using control volume method, and are solved using PISO algorithm and second-order upwind scheme. For the purpose of stable solution, time step was set to the order of $1\times10_-9s,\;and\;grids\;are\;50\times2000$. Results show that temperature and pressure distributions of fluid near the boundary wall subjected to a rapid heating are increased abruptly, and the induced thermo-acoustic wave propagates through the fluid until it decays due to viscous and heat dissipation. Pressure waves have sharp front shape and decay with a long tail in the case of step heating, but these waves have sharp pin shape in the case of pulsed heating.

A Numerical Study on the Flow and Heat Transfer Characteristics of Plastic Plate Heat Exchanger (플라스틱 판형 열교환기의 유동 및 열전달 특성에 관한 수치해석적 연구)

  • Chung, Min-Ho;Yoo, Seong-Yeon;Han, Kyu-Hyun;Yoon, Hong-Ik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.1366-1371
    • /
    • 2008
  • Four simulation models of plastic plate heat exchangers are designed and simulated. The flat plate type heat exchanger is designed as the reference model in order to evaluate how much thermal performance increases. The turbulence promoter type heat exchanger is fabricated with cylindrical-type vortex generators and rib-type turbulence promoters. The corrugate type is obtained from the conventional stainless steel compact heat exchangers, which are called the herringbone-type compact heat exchangers. The dimple type heat exchanger has a number of dimples on its surface. In this study, the flow and heat transfer characteristics of the plastic plate heat exchanger are investigated using numerical simulation and compared with experimental results. The flows are assumed as a three-dimensional, incompressible and turbulent model. The standard k-$\varepsilon$ model is used as the turbulent flow modeling, the SIMPLE algorithm is used to treat the coupling between pressure and velocity, and first order upwind scheme is used for discretization of momentum, turbulent and energy. The computational analysis and experimental results both show that the friction coefficient and Nu number is highest in the corrugate type.

  • PDF

Counter-Rotating Streamwise Vortex Formation in the Turbine Cascade with Endwall Fence

  • Koh Seong Ryong;Moon Young J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1999.05a
    • /
    • pp.155-161
    • /
    • 1999
  • The three-dimensional turbulent cascade flows with and without endwall fences are numerically investigated by solving the incompressible Navier-Stokes equations with a high-Reynolds number $k-{\varepsilon}$ turbulence closure model. A projection method based algorithm is used in the finite-volume formulation, with the second order upwind-differencing scheme for the convective terms. First, assessments on accuracy of the present method are made by comparing the static pressure distributions at the mid-span of the cascade with measured data, and also by confirming the experimental observations on the choice of an optimal fence height for the secondary flow control. In understanding the three-dimensional nature of the secondary flow in turbine cascade, the limiting streamline patterns and the static pressure contours at the suction surface of the blade as well as on the cascade endwall are employed to visualize the effectiveness of the endwall fence for the secondary flow control. Analysis on the streamwise vorticity contour maps along the cascade with the three-dimensional representation of their iso-surfaces reveals the strucuture of the complicated vortical flow in the turbine cascade with endwall fence, and also leads to an understanding on formation of the counter-rotating streamwise vortex over the endwall fence, in explaining the mechanisms of controlling the secondary flow and also for the proper selection of an optimal fence height.

  • PDF

Numerical Simulation of Shock Wave Reflecting Patterns for Different Flow Conditions

  • Choi, Sung-Yoon;Oh, Se-Jong
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.74-85
    • /
    • 2002
  • The numerical experiment has been conducted to investigate the unsteady shock wave reflecting phenomena. The cell-vertex finite-volume, Roe's upwind flux difference splitting method with unstructured grid is implemented to solve unsteady Euler equations. The $4^{th}$-order Runge-Kutta method is applied for time integration. A linear reconstruction of the flux vector using the least-square method is applied to obtain the $2^{nd}$-order accuracy for the spatial derivatives. For a better resolution of the shock wave and slipline, the dynamic grid adaptation technique is adopted. The new concept of grid adaptation technique, which is much simpler than that of conventional techniques, is introduced for the current study. Three error indicators (divergence and curl of velocity, and gradient of density) are used for the grid adaptation procedure. Considering the quality of the solution and the numerical efficiency, the grid adaptation procedure was updated up to $2^{nd}$ level at every 20 time steps. For the convenience of comparison with other experimental and analytical results, the case of interaction between the straight incoming shock wave and a sharp wedge is simulated for various flow conditions. The numerical results show good agreement with other experimental and analytical results, in the shock wave reflecting structure, slipline, and the trajectory of the triple points. Some critical cases show disagreement with the analytical results, but these cases also have been proven to show hysteresis phenomena.

Numerical Study on Three - Dimensional Viscous Flows in Turbine Blade Passages (터빈 블레이드 통로에서의 3차원 점성유동에 대한 수치해석)

  • 윤준원;유정열
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.3
    • /
    • pp.527-539
    • /
    • 1992
  • 본 연구에서는 터빈익렬의 입구유동면에 주어지는 끝벽 경계층유동에 의하여 익렬 내의 유동에서 발생하는 여러 와류들에 의한 2차 유동과 이와 연관된 여러가지 3차원 점성유동 현상 그리고 이에 따른 유동손실을 보다 정확히 예측하기 위한 수치해 석적 연구를 수행하였으며, 이에 필요한 수치해석적 연구를 수행하였으며, 이에 필요 한 수치해석코드를 작성하였다.유동특성에 대하여 상세한 연구결과가 보고되어 있 는 UTRC(United Technologies Research Center) 평면 터빈익렬을 연구대상으로 채택하 여 익렬 내의 3차원 유동특성을 연구하고 계산한 결과를 기존의 결과와 비교 검토하였 다. 강한 2차유동이 존재하는 경우에 발생하는 수치확산을 감소시키기 위하여 대류 항에 대하여 2차 정확도(second-order accuracy)의 선형상류도식(linear upwind sche- me)을 사용하여 일반적으로 널리 사용되는 하이브리드도식(hybrid scheme)에 의한 해 석결과와 비교하였다. 터빈익렬 내의 난류 유동은 익렬의 회전과 유선의 만곡 등에 의한 영향으로 복잡한 유동현상을 나타내지만, 터빈익렬 내의 난류유동 특성에 대한 실험결과가 아직까지는 부족하고 또한 본 연구에서는 평균유동값의 정확한 해석에 중 점을 두었으므로 표준 k-.epsilon. 모델을 사용하였다.

GAS-LIQUID TWO-PHASE HOMOGENEOUS MODEL FOR CAVITATING FLOW -Part II. HIGH SPEED FLOW PHENOMENA IN GAS-LIQUID TWO-PHASE MEDIA (캐비테이션 유동해석을 위한 기- 2상 국소균질 모델 -제2보: 기-액 2상 매체중의 고속유동현상)

  • Shin, B.R.;Park, S.;Rhee, S.H.
    • Journal of computational fluids engineering
    • /
    • v.19 no.3
    • /
    • pp.91-97
    • /
    • 2014
  • A high resolution numerical method aimed at solving cavitating flow was proposed and applied to gas-liquid two-phase shock tube problem with arbitrary void fraction. The present method with compressibility effects employs a finite-difference 4th-order Runge-Kutta method and Roe's flux difference splitting approximation with the MUSCL TVD scheme. The Jacobian matrix from the inviscid flux of constitute equation is diagonalized analytically and the speed of sound for the two-phase media is derived by eigenvalues. So that the present method is appropriate for the extension of high order upwind schemes based on the characteristic theory. By this method, a Riemann problem for Euler equations of one dimensional shock tube was computed. Numerical results of high speed flow phenomena such as detailed observations of shock and expansion wave propagations through the gas-liquid two-phase media and some data related to computational efficiency are made. Comparisons of predicted results and solutions at isothermal condition are provided and discussed.

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

A Numerical Study of the 3-D Flow in the Primary Calcinator of Porcelain (도자기 1차 소성로의 3차원 유동장 수치해석에 관한 연구)

  • 김성수;홍성선;박지영;오창섭
    • Journal of Energy Engineering
    • /
    • v.5 no.1
    • /
    • pp.50-55
    • /
    • 1996
  • A numerical simulation on a primary calcinator of porcelain was performed with using Fluent to calculate the heat efficiency by studying velocity vector and temperature profile according to variables such as the location of outlet and porcelain. Control-Volume based Finite Difference Method and Up-wind scheme are used for discretization of differential equation. SIMPLEC Algorithm and standard k-$\varepsilon$ turbulent model are selected to resolve the pressure-velocity coupling and the turbulent. The result of simulation showed that the whole velocity vector field in a calcinator was varied greatly according to the location of outlet. But the whole temperature profile at each zone was still high regardless of the location of outlet because of the radiation. But the temperature of a case with a outlet at sidepart of preheating or cooling zone was little high compared to the case with a outlet on the top of preheating zone. The velocity vector field and temperature profile in a calcinator were almost not affected by the location of porcelain, but the temperature inside a porcelain was much affected according to the place where it was located. The heat efficiency in a calcinator was 44.6% and the gas temperature in the outlet was about 1000 K.

  • PDF