• Title/Summary/Keyword: upwind flow

Search Result 249, Processing Time 0.028 seconds

Numerical simulation of hot embossing filling (핫엠보싱 충전공정에 관한 수치해석)

  • Kang T. G.;Kwon T. H.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.43-46
    • /
    • 2005
  • Micro molding technology is a promising mass production technology for polymer based microstructures. Mass production technologies such as the micro injection/compression molding, hot embossing, and micro reaction molding are already in use. In the present study, we have developed a numerical analysis system to simulate three-dimensional non-isothermal cavity filling for hot embossing, with a special emphasis on the free surface capturing. Precise free surface capturing has been successfully accomplished with the level set method, which is solved by means of the Runge-Kutta discontinuous Galerkin (RKDG) method. The RKDG method turns out to be excellent from the viewpoint of both numerical stability and accuracy of volume conservation. The Stokes equations are solved by the stabilized finite element method using the equal order tri-linear interpolation function. To prevent possible numerical oscillation in temperature Held we employ the streamline upwind Petrov-Galerkin (SUPG) method. With the developed code we investigated the detailed change of free surface shape in time during the mold filling. In the filling simulation of a simple rectangular cavity with repeating protruded parts, we find out that filling patterns are significantly influenced by the geometric characteristics such as the thickness of base plate and the aspect ratio and pitch of repeating microstructures. The numerical analysis system enables us to understand the basic flow and material deformation taking place during the cavity filling stage in microstructure fabrications.

  • PDF

Numerical Study on Performance of Horizontal Axis (Propeller) Tidal Turbine

  • Kim, Kyuhan;Cahyono, Joni
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.296-296
    • /
    • 2015
  • The aim of this paper is to numerically explore the feasibility of designing a Mini-Hydro turbine. The interest for this kind of horizontal axis turbine relies on its versatility. For instance, in the field of renewable energy, this kind of turbine may be considered for different applications, such as: tidal power, run-of-the-river hydroelectricity, wave energy conversion. It is fundamental to improve the turbine performance and to decrease the equipment costs for achievement of "environmental friendly" solutions and maximization of the "cost-advantage". In the present work, the commercial CFD code ANSYS is used to perform 3D simulations, solving the incompressible Unsteady Reynolds-Averaged Navier-Stokes (U-RANS) equations discretized by means of a finite volume approach. The implicit segregated version of the solver is employed. The pressure-velocity coupling is achieved by means of the SIMPLE algorithm. The convective terms are discretized using a second order accurate upwind scheme, and pressure and viscous terms are discretized by a second-order-accurate centered scheme. A second order implicit time formulation is also used. Turbulence closure is provided by the realizable k - turbulence model. In this study, a mini hydro turbine (3kW) has been considered for utilization of horizontal axis impeller. The turbine performance and flow behavior have been evaluated by means of numerical simulations. Moreover, the performance of the impeller varied in the pressure distribution, torque, rotational speed and power generated by the different number of blades and angles. The model has been validated, comparing numerical results with available experimental data.

  • PDF

Numerical Simulation for Transonic Wing-Body Configuration using CFD (CFD를 이용한 천음속 날개-동체 형상 해석)

  • Kim, Younghwa;Kang, Eunji;Ahn, Hyokeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.3
    • /
    • pp.233-240
    • /
    • 2017
  • The flowfield around transonic wing-body configuration was simulated using in-house CFD code and compared with the experimental data to understand the influence of several features of CFD(Computational Fluid Dynamics) ; grid dependency, turbulence models, spatial discretization, and viscosity. The wing-body configuration consists of a simple planform RAE Wing 'A' with an RAE 101 airfoil section and an axisymmetric body. The in-house CFD code is a compressible Euler/Navier-Stokes solver based on unstructured grid. For the turbulence model, the $k-{\omega}$ model, the Spalart-Allmaras model, and the $k-{\omega}$ SST model were applied. For the spatial discretization method, the central differencing scheme with Jameson's artificial viscosity and Roe's upwind differencing scheme were applied. The results calculated were generally in good agreement with experimental data. However, it was shown that the pressure distribution and shock-wave position were slightly affected by the turbulence models and the spatial discretization methods. It was known that the turbulent viscous effect should be considered in order to predict the accurate shock wave position.

A CFD Study on the Combustion Pressure Oscillation by a Location of a Pressure Transducer inside Closed Vessel (밀폐용기 연소실험 시 센서위치에 따라 변화하는 압력 진동에 대한 수치적 연구)

  • Han, Doo-hee;Ahn, Gil-hwan;Ryu, Byung-tae;Sung, Hong-gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.2
    • /
    • pp.66-73
    • /
    • 2018
  • A computational fluid dynamics simulation of pyrotechnic material combustion inside a cylindrical closed vessel was carried out using the Eulerian-Lagrangian method. The 5th order upwind WENO scheme and the improved delayed detached eddy turbulence model were implemented to capture shock waves. The flow structure was analyzed inside the cylindrical vessel with a pressure sensor installed at the side wall center. The analysis revealed that the pressure oscillated because of the shock wave vibration. Additionally, the simulation results with four different sensor tab depths implied that, inside the sensor tab, eddies were generated by the excessively large gap between the sensor diaphragm and the side wall. These eddies caused irregularity to the measured time-pressure curve, which is an undesirable characteristic.

Dispersion in the Unsteady Separated Flow Past Complex Geometries (복합지형상에서 비정상 박리흐름에 의한 확산)

  • Ryu, Chan-Su
    • Journal of the Korean earth science society
    • /
    • v.22 no.6
    • /
    • pp.512-527
    • /
    • 2001
  • Separated flows passed complex geometries are modeled by discrete vortex techniques. The flows are assumed to be rotational and inviscid, and a new techlnique is described to determine the stream functions for linear shear profiles. The geometries considered are the snow cornice and the backward-facing step, whose edges allow for the separation of the flow and reattachment downstream of the recirculation regions. A point vortex has been added to the flows in order to constrain the separation points to be located at the edges, while the conformal mappings have been modified in order to smooth the sharp edges and to let the separation points free to oscillate around the points of maximum curvature. Unsteadiness is imposed to the flow by perturbing the vortex location, either by displacing the vortex from the equilibrium, or by imposing a random perturbation with zero mean to the vortex in equilibrium. The trajectories of passive scalars continuously released upwind of the separation point and trapped by the recirculating bubble are numerically integrated, and concentration time series are calculated at fixed locations downwind of the reattachment points. This model proves to be capable of reproducing the trapping and intermittent release of scalars, in agreement with the simulation of the flow passed a snow cornice performed by a discrete multi-vortex model, as well as with direct numerical simulations of the flow passed a backward-facing step. The results of simulation indicate that for flows undergoing separation and reattachment the unsteadiness of the recirculating bubble is the main mechanism responsible for the intense large-scale concentration fluctuations downstream.

  • PDF

Moving boundary condition for simulation of inundation (범람 모의를 위한 이동경계조건)

  • Lin, Tae-hoon;Lee, Bong-Hee;Cho, Dae-Hee;Cho, Yong-Sik
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.6
    • /
    • pp.937-947
    • /
    • 2003
  • A shoreline, which has no the water depth, moves continuously as waves rise up and recede. Therefore, a special boundary treatment is required to track properly the movements of the shoreline in numerical modeling of the behavior of tsunamis or tides near a coastal zone. In this study, convective terms in nonlinear shallow-water equations are discretized explicitly by using a second-order upwind scheme to describe a moving shoreline more accurately. An oscillatory flow motion in a circular paraboloidal basin has been employed to validate the performance of the developed numerical model. Computed results of instantaneous free surface displacements are compared with those of analytical solutions and existing numerical solutions. The run-up heights in the vicinity of a circular island have also been calculated and obtained numerical results have been shown against available laboratory measurements. A good agreement has been observed.

Analysis of Steady Flow Around a Two-Dimensional Body Under the Free Surface Using B-Spline Based Higher Order Panel Method (B-Spline 기저 고차경계요소법에 의한 자유수면하의 2차원 물체주위 유동해석)

  • Jae-Moon Lew;Yang-Ik Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.39 no.1
    • /
    • pp.8-15
    • /
    • 2002
  • A two-dimensional higher order panel method using B-splines has been developed to overcome the disadvantages of the low order panel method and to obtain more accurate solution. The sources and the normal dipoles are distributed on both the body and the free surface. Instead of applying the upwind finite difference schemes to satisfy the linearized free surface and the radiation condition, the derivatives of the basis functions of the B-splines are directly applied to the linearized free surface condition. Numerical damping in the Dawson's method are avoided in the Present computations. In order to validate the present method, numerical computations are carried out for a submerged cylinder and a two-dimensional hydrofoil steadily moving beneath a free surface. The numerical results show that fast convergence and better accuracies have been achieved by the present method.

Numerical Simulation of Two-Dimensional Shipping Water by Using a Simplified Model (단순화 모델에 의한 2차원 갑판침입수의 수치 시뮬레이션)

  • Kim, Yong J.;Kim, In C.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.2
    • /
    • pp.1-12
    • /
    • 1996
  • Hydrodynamic characteristics of shipping water on deck are investigated by using a simplified two-dimensional model. Formulation of the shipping water on deck leads to a nonlinear hyperbolic system of equations based on the shallow-water wave theory. Time-domain solution of these equations are obtained numerically using a finite difference method which adopts predictor-corrector method for time-marching and 2nd upwind differencing method for convection term calculation. To confirm the validity of the present numerical method, we calculated some shallow-water wave problems accompanying a bore and compared the obtained results with the analytic solutions. We found good agreements between them. Though the calculation results of shipping water on deck, we show that the shipping water flows into the deck as a rarefying wave arid grows into a bore after colliding with a deck structure. Also we examined the effects of acceleration and slope of deck and found that they have significant influences on the flow of shipping water.

  • PDF

Weighted Averaged Flux Method for Computation of Shallow Water Equations (WAF 기법을 이용한 천수방정식 해석)

  • Kim, Woo-Gu;Jung, Kwan-Sue;Kim, Jae-Han
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.5
    • /
    • pp.777-785
    • /
    • 2003
  • A numerical model for the solution of two-dimensional free surface flow is developed on unstructured grid. By using fractional step method, the two-dimensional shallow water equations (SWE) are treated as two one-dimensional problems. Thus, it is possible to simulate computational hydraulic problems with higher computational efficiency. The one-dimensional problems are solved using upwind TVD version of second-order Weighted Averaged Flux (WAF) scheme with HLLC approximate Riemann solver. The numerical oscillations which are common with second-order numerical scheme are controlled by exploiting WAF flux limiter, Some idealized test problems are solved using this model and very accurate and stable solutions are obtained. It can be concluded as an efficient implement for the computation of SWE including dam break problems that concerning discontinuities, subcritical and supercritical flows and complex domain.

Characteristics of Atmospheric Circulation in Sokcho Coast (속초연안에서 대기순환의 특성)

  • Choi Hyo
    • Journal of Environmental Science International
    • /
    • v.14 no.1
    • /
    • pp.41-51
    • /
    • 2005
  • Using three-dimensional non-hydrostatical numerical model with one way double nesting technique, atmo­spheric circulation in the mountainous coastal region in summer was investigated from August 13 through 15, 1995. During the day, synoptic westerly wind blows over Mt. Mishrung in the west of a coastal city, Sokcho toward the East Sea, while simultaneously, easterly upslope wind combined with both valley wind from plain (coast) toward mountain and sea-breeze from sea toward inland coast blows toward the top of the mountain. Two different directional wind systems confront each other in the mid of eastern slope of the mountain and the upslope wind goes up to the height over 2 km, becoming an easterly return flow in the upper level over the sea and making sea-breeze front with two kinds of sea-breeze circulations of a small one in the coast and a large one in the open sea. Convective boundary layer is developed with a thickness of about 1km over the ground in the upwind side of the mountain in the west and a thickness of thermal internal boundary layer from the coast along the eastern slope of the mountain is only confined to less than 200 m. On the other hand, after sunset, no prohibition of upslope wind generated during the day and downward wind combined with mountain wind from mountain towardplain and land-breeze from land toward under nocturnal radiative cooling of the ground surfaces should intensify westerly downslope wind, resulting in the formation of wind storm. As the wind storm moving down along the eastern slop causes the development of internal gravity waves with hydraulic jump motion in the coast, bounding up toward the upper level of the coastal sea, atmospheric circulation with both onshore and offshore winds like sea-breeze circulation forms in the coastal sea within 70 km until midnight and after that, westerly wind prevails in the coast and open seas.