• Title/Summary/Keyword: uptake of ^11C-Methionine

Search Result 6, Processing Time 0.023 seconds

Purification of Methioninase from Pseudomonas putida and Its Effect on the Uptake of ^11C-Methionine in Vivo. (Pseudomonas putida 유래 Methioninase의 정제 및 생체내 ^11C-Methionine 섭취에 미치는 영향)

  • 변상성;박귀근
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.4
    • /
    • pp.377-382
    • /
    • 2003
  • Purification of methioninase resulted in a yield of 69%, and SDS-PAGE analysis of the purified product revealed a single band of approximately 43 kDa in molecular weight. in vitro experiments with cancer cells incubated in methionine-free media demonstrated an increase in $^{11}$ C-methionine uptake to 25.8$\pm$1.1% at 6 hr, 31.8$\pm$0.8% at 24 hr, and 62.2$\pm$0.6% at 48hr, compared to controls. Treatment of the cancer cells with purified methioninase showed no decrease in survival after a 2 hr incubation with 0.01 U/ml, but survival of RR1022 cells decreased 30% after 24 to 48 hr incubation. SKOV-3 cells showed a 5% and 14% decrease in survival with 0.1 and 1 U/ml methioninase after 24 hr. After 48hr survival decreased 15% and 24% with 0.1 and 1 U/ml methioninase. Measurements of $^{11}$ C-methionine uptake in RR1022 cells demonstrated no change at 2 hr, but a 13.7$\pm$4.7% and 40.7$\pm$2.6% increase in uptake at 24 and 48 hr, respectively. SKOV-3 cells also showed no change at 2 hr, but had a 17.7$\pm$7.2% and 38.9$\pm$4.9% increase in $^{11}$ C-methionine uptake after 24 hr and 48 hr treatment with methioninase, respectively. $^{11}$ C-methionine PET imaging revealed clear visualization of both the tumors and contralateral infectious lesions. Administration of rMET appeared to result in a slight increase in tumor:nontumor contrast on $^{11}$ C-methionine PET images. Injection of purified methioninase also produced PET images where tumor uptake was higher than that of infectious lesions.

In Vitro Study of Tumor Seeking Radiopharmaceutical Uptake by Human Breast Cancer Cell Line MCF-7 after Paclitaxel Treatment (사람 유방암세포주 MCF-7에 Paclitaxel 처치 후 종양영상용 방사성의약품 섭취 변화에 대한 시험관내 연구)

  • Choi, Joon-Young;Choi, Yong;Choe, Yearn-Seong;Lee, Kyung-Han;Kim, Byung-Tae
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.41 no.5
    • /
    • pp.364-372
    • /
    • 2007
  • Purpose: This study was designed to investigate the cellular uptake of various tumor imaging radiopharmaceuticals in human breast cancer cells before and after paclitaxel exposure considering viable cell number. Materials and Methods: F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin were used to evaluate the cellular uptake in MCF-7 cells. MCF-7 cells were cultured in multi-well plates. Wells were divided into DMSO exposure control group, and paclitaxel exposure group. The exposure durations of paclitaxel with 10 nM or 100 nM were 2 h, 6 h, 12 h, 24 h, and 48 h. Results: Viable cell fraction was reduced as the concentration and exposure time of paclitaxel increased. After 10 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was not reduced significantly, irrespective of exposure time and viable cell fraction. After 100 nM paclitaxel exposure, the cellular uptake of all 5 radiopharmaceuticals was enhanced significantly irrespective of viable cell fraction. The peak uptake was observed in experimental groups with paclitaxel exposure for 6 to 48 h according the type of radiopharmaceutical. When the cellular uptake was adjusted for the viable cell fraction and cell count, the peak cellular uptake was observed in experimental groups with paclitaxel exposure for 48 h, irrespective of the type of radiopharmaceutical. Conclusion: The cellular uptake of F-18-fluorodeoxyglucose, C-11-methionine, Tl-201, Tc-99m-MIBI, and Tc-99m-tetrofosmin did not reflect viable cell number in MCF-7 cells after paclitaxel exposure for up to 48 h.

Current Radiopharmaceuticals for Positron Emission Tomography of Brain Tumors

  • Jung, Ji-hoon;Ahn, Byeong-Cheol
    • Brain Tumor Research and Treatment
    • /
    • v.6 no.2
    • /
    • pp.47-53
    • /
    • 2018
  • Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is $^{18}F$-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, $^{11}C$-methionine and $^{18}F$-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, $^{11}C$-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.

Usefulness of $^{11}C-Methyl-L-and$ D-Methionine PET in Gliomas : with Special Attention to Recurrence

  • Cho, Won-Sang;Kim, Chi-Heon;Kim, Jeong-Eun;Chung, June-Key;Paek, Sun-Ha;Jung, Hee-Won
    • Journal of Korean Neurosurgical Society
    • /
    • v.39 no.3
    • /
    • pp.176-182
    • /
    • 2006
  • Objective : This study concernes the usefulness of $^{11}C-methyl-L-and$ D-methionine[Met]-positron emission tomography[PET] for glioma grading and detection of recurrence in gliomas, compared with fluorine-18, 2-fluoro-deoxyglucose[FDG]-PET. Methods : Eighty patients underwent Met-PET study for evaluation of glioma : 37 astrocytomas [WHO grade II, 3; III, 8; IV, 26]. 27 oligodendrogliomas [WHO grade II, 16; III, 11]. and 12 suspicious recurrent gliomas. All images were taken within 2 weeks before operation. For suspicious recurrent cases on magnetic resonance images, both FDG-PET and Met-PET were performed. Results : In astrocytoma, Mean maximum standard uptake value[SUV] of region of interest[ROI] was not different between WHO grades [p=0.108]. but ROI/normal contralateral tissue SUV [T/N] ratio was statistically different between WHO grades [p=0.002]. T/N ratio was more closely related to visual scale than maximum SUV of ROI [p<0.001 and p=0.107 respectively]. In oligodendroglioma, there was no statistical difference between WHO grades in view of maximum SUV and T/N ratio. For recurrent gliomas, sensitivity of FDG-PET and Met-PET was 25% and 100%, while specificity of FDG-PET and Met-PET were 100% and 80%, respectively. Conclusion : Met-PET might be an appropriate tool for tumor grading in astrocytoma and be more sensitive for detection of recurrence in gliomas than FDG-PET.

Quantitative Feasibility Evaluation of 11C-Methionine Positron Emission Tomography Images in Gamma Knife Radiosurgery : Phantom-Based Study and Clinical Application

  • Lim, Sa-Hoe;Jung, Tae-Young;Jung, Shin;Kim, In-Young;Moon, Kyung-Sub;Kwon, Seong-Young;Jang, Woo-Youl
    • Journal of Korean Neurosurgical Society
    • /
    • v.62 no.4
    • /
    • pp.476-486
    • /
    • 2019
  • Objective : The functional information of $^{11}C$-methionine positron emission tomography (MET-PET) images can be applied for Gamma knife radiosurgery (GKR) and its image quality may affect defining the tumor. This study conducted the phantom-based evaluation for geometric accuracy and functional characteristic of diagnostic MET-PET image co-registered with stereotactic image in Leksell $GammaPlan^{(R)}$ (LGP) and also investigated clinical application of these images in metastatic brain tumors. Methods : Two types of cylindrical acrylic phantoms fabricated in-house were used for this study : the phantom with an array-shaped axial rod insert and the phantom with different sized tube indicators. The phantoms were mounted on the stereotactic frame and scanned using computed tomography (CT), magnetic resonance imaging (MRI), and PET system. Three-dimensional coordinate values on co-registered MET-PET images were compared with those on stereotactic CT image in LGP. MET uptake values of different sized indicators inside phantom were evaluated. We also evaluated the CT and MRI co-registered stereotactic MET-PET images with MR-enhancing volume and PET-metabolic tumor volume (MTV) in 14 metastatic brain tumors. Results : Imaging distortion of MET-PET was maintained stable at less than approximately 3% on mean value. There was no statistical difference in the geometric accuracy according to co-registered reference stereotactic images. In functional characteristic study for MET-PET image, the indicator on the lateral side of the phantom exhibited higher uptake than that on the medial side. This effect decreased as the size of the object increased. In 14 metastatic tumors, the median matching percentage between MR-enhancing volume and PET-MTV was 36.8% on PET/MR fusion images and 39.9% on PET/CT fusion images. Conclusion : The geometric accuracy of the diagnostic MET-PET co-registered with stereotactic MR in LGP is acceptable on phantom-based study. However, the MET-PET images could the limitations in providing exact stereotactic information in clinical study.

Single Nucleotide Polymorphism of TBC1D1 Gene Association with Growth Traits and Serum Clinical-Chemical Traits in Chicken

  • Manjula, Prabuddha;Cho, Sunghuyn;Suh, Kook Jin;Seo, Dongwon;Lee, Jun Heon
    • Korean Journal of Poultry Science
    • /
    • v.45 no.4
    • /
    • pp.291-298
    • /
    • 2018
  • TBC1D1 gene has known functional effects on body energy homeostasis and glucose uptake pathway in skeletal muscle tissue. This biological function is reported to have significant effects on traits of growth and meat quality in chicken. In this study, we focused on two single nucleotide polymorphisms (SNPs) (g.70179137A>G and g.70175861T>C) identified through SNP annotation information of Korean native chicken and previous literature for TBC1D1 in chicken. Association of SNPs in TBC1D1 with growth and serum clinical-chemical traits were evaluated. A total of 584 male and female birds from five Korean native chicken lines were used in the study. The SNP1 (g.70179137A>G) is located in intron 11 and SNP2 (g.70175861T>C) is a non-synonymous missense mutation in exon 10, responsible for the amino acid change from Methionine to Valine. The A allele of SNP1 and T allele of SNP2 had the highest allele frequencies. Both SNPs indicated moderate polymorphism information content values (0.25