DOI QR코드

DOI QR Code

Current Radiopharmaceuticals for Positron Emission Tomography of Brain Tumors

  • Jung, Ji-hoon (Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital) ;
  • Ahn, Byeong-Cheol (Department of Nuclear Medicine, School of Medicine, Kyungpook National University, Kyungpook National University Hospital)
  • Received : 2018.07.17
  • Accepted : 2018.09.19
  • Published : 2018.10.31

Abstract

Brain tumors represent a diverse spectrum of histology, biology, prognosis, and treatment options. Although MRI remains the gold standard for morphological tumor characterization, positron emission tomography (PET) can play a critical role in evaluating disease status. This article focuses on the use of PET with radiolabeled glucose and amino acid analogs to aid in the diagnosis of tumors and differentiate between recurrent tumors and radiation necrosis. The most widely used tracer is $^{18}F$-fluorodeoxyglucose (FDG). Although the intensity of FDG uptake is clearly associated with tumor grade, the exact role of FDG PET imaging remains debatable. Additionally, high uptake of FDG in normal grey matter limits its use in some low-grade tumors that may not be visualized. Because of their potential to overcome the limitation of FDG PET of brain tumors, $^{11}C$-methionine and $^{18}F$-3,4-dihydroxyphenylalanine (FDOPA) have been proposed. Low accumulation of amino acid tracers in normal brains allows the detection of low-grade gliomas and facilitates more precise tumor delineation. These amino acid tracers have higher sensitivity and specificity for detecting brain tumors and differentiating recurrent tumors from post-therapeutic changes. FDG and amino acid tracers may be complementary, and both may be required for assessment of an individual patient. Additional tracers for brain tumor imaging are currently under development. Combinations of different tracers might provide more in-depth information about tumor characteristics, and current limitations may thus be overcome in the near future. PET with various tracers including FDG, $^{11}C$-methionine, and FDOPA has improved the management of patients with brain tumors. To evaluate the exact value of PET, however, additional prospective large sample studies are needed.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. Segtnan EA, Hess S, Grupe P, Hoilund-Carlsen PF. $^{18}F$-fluorodeoxyglucose PET/computed tomography for primary brain tumors. PET Clin 2015;10:59-73. https://doi.org/10.1016/j.cpet.2014.09.005
  2. Ostrom QT, Gittleman H, Liao P, et al. CBTRUS Statistical Report: primary brain and other central nervous system tumors diagnosed in the United States in 2010-2014. Neuro Oncol 2017;19(suppl_5):v1-v88. https://doi.org/10.1093/neuonc/nox158
  3. Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 2016;131:803-20. https://doi.org/10.1007/s00401-016-1545-1
  4. Dunet V, Pomoni A, Hottinger A, Nicod-Lalonde M, Prior JO. Performance of 18F-FET versus 18F-FDG-PET for the diagnosis and grading of brain tumors: systematic review and meta-analysis. Neuro Oncol 2016;18:426-34. https://doi.org/10.1093/neuonc/nov148
  5. Hustinx R, Fosse P. PET in Brain Tumors. PET Clin 2010;5:185-97. https://doi.org/10.1016/j.cpet.2010.02.004
  6. El-Deiry WS, Sigman CC, Kelloff GJ. Imaging and oncologic drug development. J Clin Oncol 2006;24:3261-73. https://doi.org/10.1200/JCO.2006.06.5623
  7. la Fougere C, Suchorska B, Bartenstein P, Kreth FW, Tonn JC. Molecular imaging of gliomas with PET: opportunities and limitations. Neuro Oncol 2011;13:806-19. https://doi.org/10.1093/neuonc/nor054
  8. Segtnan EA, Grupe P, Jarden JO, et al. Prognostic implications of total hemispheric glucose metabolism ratio in cerebrocerebellar diaschisis. J Nucl Med 2017;58:768-73. https://doi.org/10.2967/jnumed.116.180398
  9. Delbeke D, Meyerowitz C, Lapidus RL, et al. Optimal cutoff levels of F-18 fluorodeoxyglucose uptake in the differentiation of low-grade from high-grade brain tumors with PET. Radiology 1995;195:47-52. https://doi.org/10.1148/radiology.195.1.7892494
  10. Warburg O. On the origin of cancer cells. Science 1956;123:309-14. https://doi.org/10.1126/science.123.3191.309
  11. Gallagher BM, Fowler JS, Gutterson NI, MacGregor RR, Wan CN, Wolf AP. Metabolic trapping as a principle of oradiopharmaceutical design: some factors resposible for the biodistribution of [18F] 2-deoxy-2-fluoro-D-glucose. J Nucl Med 1978;19:1154-61.
  12. Nishioka T, Oda Y, Seino Y, et al. Distribution of the glucose transporters in human brain tumors. Cancer Res 1992;52:3972-9.
  13. Singhal T, Narayanan TK, Jacobs MP, Bal C, Mantil JC. 11C-methionine PET for grading and prognostication in gliomas: a comparison study with 18F-FDG PET and contrast enhancement on MRI. J Nucl Med 2012;53:1709-15. https://doi.org/10.2967/jnumed.111.102533
  14. Chao ST, Suh JH, Raja S, Lee SY, Barnett G. The sensitivity and specificity of FDG PET in distinguishing recurrent brain tumor from radionecrosis in patients treated with stereotactic radiosurgery. Int J Cancer 2001;96:191-7. https://doi.org/10.1002/ijc.1016
  15. Padma MV, Said S, Jacobs M, et al. Prediction of pathology and survival by FDG PET in gliomas. J Neurooncol 2003;64:227-37. https://doi.org/10.1023/A:1025665820001
  16. Herholz K, Pietrzyk U, Voges J, et al. Correlation of glucose consumption and tumor cell density in astrocytomas. A stereotactic PET study. J Neurosurg 1993;79:853-8. https://doi.org/10.3171/jns.1993.79.6.0853
  17. Zhao C, Zhang Y, Wang J. A meta-analysis on the diagnostic performance of (18)F-FDG and (11)C-methionine PET for differentiating brain tumors. AJNR Am J Neuroradiol 2014;35:1058-65. https://doi.org/10.3174/ajnr.A3718
  18. Horky LL, Hsiao EM, Weiss SE, Drappatz J, Gerbaudo VH. Dual phase FDG-PET imaging of brain metastases provides superior assessment of recurrence versus post-treatment necrosis. J Neurooncol 2011;103:137-46. https://doi.org/10.1007/s11060-010-0365-8
  19. Prieto E, Marti-Climent JM, Dominguez-Prado I, et al. Voxel-based analysis of dual-time-point 18F-FDG PET images for brain tumor identification and delineation. J Nucl Med 2011;52:865-72. https://doi.org/10.2967/jnumed.110.085324
  20. Wong TZ, van der Westhuizen GJ, Coleman RE. Positron emission tomography imaging of brain tumors. Neuroimaging Clin N Am 2002;12:615-26. https://doi.org/10.1016/S1052-5149(02)00033-3
  21. Santra A, Kumar R, Sharma P, et al. F-18 FDG PET-CT in patients with recurrent glioma: comparison with contrast enhanced MRI. Eur J Radiol 2012;81:508-13. https://doi.org/10.1016/j.ejrad.2011.01.080
  22. Langleben DD, Segall GM. PET in differentiation of recurrent brain tumor from radiation injury. J Nucl Med 2000;41:1861-7.
  23. Wang SX, Boethius J, Ericson K. FDG-PET on irradiated brain tumor: ten years' summary. Acta Radiologica 2006;47:85-90. https://doi.org/10.1080/02841850500335101
  24. Sharma A, McConathy J. Overview of PET tracers for brain tumor imaging. PET Clin 2013;8:129-46. https://doi.org/10.1016/j.cpet.2013.02.001
  25. Chen W. Clinical applications of PET in brain tumors. J Nucl Med 2007;48:1468-81. https://doi.org/10.2967/jnumed.106.037689
  26. Chen W, Silverman DH. Advances in evaluation of primary brain tumors. Semin Nucl Med 2008;38:240-50. https://doi.org/10.1053/j.semnuclmed.2008.02.005
  27. Salber D, Stoffels G, Pauleit D, et al. Differential uptake of O-(2-18F-fluoroethyl)-L-tyrosine, L-3H-methionine, and 3H-deoxyglucose in brain abscesses. J Nucl Med 2007;48:2056-62. https://doi.org/10.2967/jnumed.107.046615
  28. Morbelli S, Djekidel M, Hesse S, Pagani M, Barthel H. Role of (18)F-FDG-PET imaging in the diagnosis of autoimmune encephalitis. Lancet Neurol 2016;15:1009-10. https://doi.org/10.1016/S1474-4422(16)30140-5
  29. Solnes LB, Jones KM, Rowe SP, et al. Diagnostic value of $^{18}F$-FDG PET/CT versus MRI in the setting of antibody-specific autoimmune encephalitis. J Nucl Med 2017;58:1307-13. https://doi.org/10.2967/jnumed.116.184333
  30. Koopmans KP, Glaudemans AW. Rationale for the use of radiolabelled peptides in diagnosis and therapy. Eur J Nucl Med Mol Imaging 2012;39 Suppl 1:S4-10.
  31. Gulyas B, Halldin C. New PET radiopharmaceuticals beyond FDG for brain tumor imaging. Q J Nucl Med Mol Imaging 2012;56:173-90.
  32. Karunanithi S, Sharma P, Kumar A, et al. Can (18)F-FDOPA PET/CT predict survival in patients with suspected recurrent glioma? A prospective study. Eur J Radiol 2014;83:219-25. https://doi.org/10.1016/j.ejrad.2013.09.004
  33. Mosskin M, Ericson K, Hindmarsh T, et al. Positron emission tomography compared with magnetic resonance imaging and computed tomography in supratentorial gliomas using multiple stereotactic biopsies as reference. Acta Radiol 1989;30:225-32. https://doi.org/10.1177/028418518903000301
  34. Terakawa Y, Tsuyuguchi N, Iwai Y, et al. Diagnostic accuracy of 11C-methionine PET for differentiation of recurrent brain tumors from radiation necrosis after radiotherapy. J Nucl Med 2008;49:694-9. https://doi.org/10.2967/jnumed.107.048082
  35. Ullrich RT, Kracht L, Brunn A, et al. Methyl-L-11C-methionine PET as a diagnostic marker for malignant progression in patients with glioma. J Nucl Med 2009;50:1962-8. https://doi.org/10.2967/jnumed.109.065904
  36. Kobayashi K, Hirata K, Yamaguchi S, et al. Prognostic value of volumebased measurements on (11)C-methionine PET in glioma patients. Eur J Nucl Med Mol Imaging 2015;42:1071-80. https://doi.org/10.1007/s00259-015-3046-1
  37. Glaudemans AW, Enting RH, Heesters MA, et al. Value of 11C-methionine PET in imaging brain tumours and metastases. Eur J Nucl Med Mol Imaging 2013;40:615-35. https://doi.org/10.1007/s00259-012-2295-5
  38. Kracht LW, Miletic H, Busch S, et al. Delineation of brain tumor extent with [11C]L-methionine positron emission tomography: local comparison with stereotactic histopathology. Clin Cancer Res 2004;10:7163-70. https://doi.org/10.1158/1078-0432.CCR-04-0262
  39. Ishiwata K, Kubota K, Murakami M, et al. Re-evaluation of amino acid PET studies: can the protein synthesis rates in brain and tumor tissues be measured in vivo? J Nucl Med 1993;34:1936-43.
  40. Kato T, Shinoda J, Oka N, et al. Analysis of 11C-methionine uptake in low-grade gliomas and correlation with proliferative activity. AJNR Am J Neuroradiol 2008;29:1867-71. https://doi.org/10.3174/ajnr.A1242
  41. Dhermain FG, Hau P, Lanfermann H, Jacobs AH, van den Bent MJ. Advanced MRI and PET imaging for assessment of treatment response in patients with gliomas. Lancet Neurol 2010;9:906-20. https://doi.org/10.1016/S1474-4422(10)70181-2
  42. Singhal T, Narayanan TK, Jain V, Mukherjee J, Mantil J. 11C-L-methionine positron emission tomography in the clinical management of cerebral gliomas. Mol Imaging Biol 2008;10:1-18. https://doi.org/10.1007/s11307-007-0115-2
  43. Singhal T, Alavi A, Kim CK. Brain: positron emission tomography tracers beyond [$^{18}F$]fluorodeoxyglucose. PET Clin 2014;9:267-76. https://doi.org/10.1016/j.cpet.2014.03.009
  44. Braun V, Dempf S, Weller R, Reske SN, Schachenmayr W, Richter HP. Cranial neuronavigation with direct integration of (11)C methionine positron emission tomography (PET) data- results of a pilot study in 32 surgical cases. Acta Neurochir (Wien) 2002;144:777-82; discussion 782. https://doi.org/10.1007/s00701-002-0942-5
  45. Herholz K, Holzer T, Bauer B, et al. 11C-methionine PET for differential diagnosis of low-grade gliomas. Neurology 1998;50:1316-22. https://doi.org/10.1212/WNL.50.5.1316
  46. Yamane T, Sakamoto S, Senda M. Clinical impact of (11)C-methionine PET on expected management of patients with brain neoplasm. Eur J Nucl Med Mol Imaging 2010;37:685-90. https://doi.org/10.1007/s00259-009-1302-y
  47. Dandois V, Rommel D, Renard L, Jamart J, Cosnard G. Substitution of 11C-methionine PET by perfusion MRI during the follow-up of treated high-grade gliomas: preliminary results in clinical practice. J Neuroradiol 2010;37:89-97. https://doi.org/10.1016/j.neurad.2009.04.005
  48. Mosskin M, von Holst H, Bergstrom M, et al. Positron emission tomography with 11C-methionine and computed tomography of intracranial tumours compared with histopathologic examination of multiple biopsies. Acta Radiol 1987;28:673-81.
  49. Demetriades AK, Almeida AC, Bhangoo RS, Barrington SF. Applications of positron emission tomography in neuro-oncology: a clinical approach. Surgeon 2014;12:148-57. https://doi.org/10.1016/j.surge.2013.12.001
  50. De Witte O, Goldberg I, Wikler D, et al. Positron emission tomography with injection of methionine as a prognostic factor in glioma. J Neurosurg 2001;95:746-50. https://doi.org/10.3171/jns.2001.95.5.0746
  51. Kameyama M, Shirane R, Itoh J, et al. The accumulation of 11C-methionine in cerebral glioma patients studied with PET. Acta Neurochir (Wien) 1990;104:8-12. https://doi.org/10.1007/BF01842885
  52. Kato T, Shinoda J, Nakayama N, et al. Metabolic assessment of gliomas using 11C-methionine, [18F] fluorodeoxyglucose, and 11C-choline positron-emission tomography. AJNR Am J Neuroradiol 2008;29:1176-82. https://doi.org/10.3174/ajnr.A1008
  53. Kaschten B, Stevenaert A, Sadzot B, et al. Preoperative evaluation of 54 gliomas by PET with fluorine-18-fluorodeoxyglucose and/or carbon-11-methionine. J Nucl Med 1998;39:778-85.
  54. Ceyssens S, Van Laere K, de Groot T, Goffin J, Bormans G, Mortelmans L. [11C]methionine PET, histopathology, and survival in primary brain tumors and recurrence. AJNR Am J Neuroradiol 2006;27:1432-7.
  55. Moulin-Romsee G, D'Hondt E, de Groot T, et al. Non-invasive grading of brain tumours using dynamic amino acid PET imaging: does it work for 11C-methionine? Eur J Nucl Med Mol Imaging 2007;34:2082-7. https://doi.org/10.1007/s00259-007-0557-4
  56. Nihashi T, Dahabreh IJ, Terasawa T. Diagnostic accuracy of PET for recurrent glioma diagnosis: a meta-analysis. AJNR Am J Neuroradiol 2013;34:944-50, S1-11. https://doi.org/10.3174/ajnr.A3324
  57. Bergmann R, Pietzsch J, Fuechtner F, et al. 3-O-methyl-6-18F-fluoro-L-dopa, a new tumor imaging agent: investigation of transport mechanism in vitro. J Nucl Med 2004;45:2116-22.
  58. Heiss WD, Wienhard K, Wagner R, et al. F-Dopa as an amino acid tracer to detect brain tumors. J Nucl Med 1996;37:1180-2.
  59. Suchorska B, Tonn JC, Jansen NL. PET imaging for brain tumor diagnostics. Curr Opin Neurol 2014;27:683-8. https://doi.org/10.1097/WCO.0000000000000143
  60. Becherer A, Karanikas G, Szabo M, et al. Brain tumour imaging with PET: a comparison between [18F]fluorodopa and [11C]methionine. Eur J Nucl Med Mol Imaging 2003;30:1561-7. https://doi.org/10.1007/s00259-003-1259-1
  61. Bell C, Dowson N, Puttick S, et al. Increasing feasibility and utility of (18)F-FDOPA PET for the management of glioma. Nucl Med Biol 2015;42:788-95. https://doi.org/10.1016/j.nucmedbio.2015.06.001
  62. Fueger BJ, Czernin J, Cloughesy T, et al. Correlation of 6-18F-fluoro-Ldopa PET uptake with proliferation and tumor grade in newly diagnosed and recurrent gliomas. J Nucl Med 2010;51:1532-8. https://doi.org/10.2967/jnumed.110.078592
  63. Karunanithi S, Sharma P, Kumar A, et al. 18F-FDOPA PET/CT for detection of recurrence in patients with glioma: prospective comparison with 18F-FDG PET/CT. Eur J Nucl Med Mol Imaging 2013;40:1025-35. https://doi.org/10.1007/s00259-013-2384-0
  64. Chen W, Silverman DH, Delaloye S, et al. 18F-FDOPA PET imaging of brain tumors: comparison study with 18F-FDG PET and evaluation of diagnostic accuracy. J Nucl Med 2006;47:904-11.
  65. Beuthien-Baumann B, Bredow J, Burchert W, et al. 3-O-methyl-6-[18F]fluoro-L-DOPA and its evaluation in brain tumour imaging. Eur J Nucl Med Mol Imaging 2003;30:1004-8. https://doi.org/10.1007/s00259-003-1205-2
  66. Pafundi DH, Laack NN, Youland RS, et al. Biopsy validation of 18F-DOPA PET and biodistribution in gliomas for neurosurgical planning and radiotherapy target delineation: results of a prospective pilot study. Neuro Oncol 2013;15:1058-67. https://doi.org/10.1093/neuonc/not002
  67. Grosu AL, Weber WA, Franz M, et al. Reirradiation of recurrent highgrade gliomas using amino acid PET (SPECT)/CT/MRI image fusion to determine gross tumor volume for stereotactic fractionated radiotherapy. Int J Radiat Oncol Biol Phys 2005;63:511-9. https://doi.org/10.1016/j.ijrobp.2005.01.056
  68. Schwarzenberg J, Czernin J, Cloughesy TF, et al. Treatment response evaluation using 18F-FDOPA PET in patients with recurrent malignant glioma on bevacizumab therapy. Clin Cancer Res 2014;20:3550-9. https://doi.org/10.1158/1078-0432.CCR-13-1440
  69. Cicone F, Minniti G, Romano A, et al. Accuracy of F-DOPA PET and perfusion-MRI for differentiating radionecrotic from progressive brain metastases after radiosurgery. Eur J Nucl Med Mol Imaging 2015;42:103-11. https://doi.org/10.1007/s00259-014-2886-4
  70. Herholz K. Brain tumors: an update on clinical PET research in gliomas. Semin Nucl Med 2017;47:5-17. https://doi.org/10.1053/j.semnuclmed.2016.09.004
  71. Chen W, Cloughesy T, Kamdar N, et al. Imaging proliferation in brain tumors with 18F-FLT PET: comparison with 18F-FDG. J Nucl Med 2005;46:945-52.
  72. Yamamoto Y, Ono Y, Aga F, Kawai N, Kudomi N, Nishiyama Y. Correlation of 18F-FLT uptake with tumor grade and Ki-67 immunohistochemistry in patients with newly diagnosed and recurrent gliomas. J Nucl Med 2012;53:1911-5. https://doi.org/10.2967/jnumed.112.104729
  73. Nikaki A, Angelidis G, Efthimiadou R, et al. $^{18}F$-fluorothymidine PET imaging in gliomas: an update. Ann Nucl Med 2017;31:495-505. https://doi.org/10.1007/s12149-017-1183-2
  74. Choi SJ, Kim JS, Kim JH, et al. [18F]3'-deoxy-3'-fluorothymidine PET for the diagnosis and grading of brain tumors. Eur J Nucl Med Mol Imaging 2005;32:653-9. https://doi.org/10.1007/s00259-004-1742-3
  75. Jeong SY, Lim SM. Comparison of 3'-deoxy-3'-[18F]fluorothymidine PET and O-(2-[18F]fluoroethyl)-L-tyrosine PET in patients with newly diagnosed glioma. Nucl Med Biol 2012;39:977-81. https://doi.org/10.1016/j.nucmedbio.2012.02.009
  76. Hatakeyama T, Kawai N, Nishiyama Y, et al. 11C-methionine (MET) and 18F-fluorothymidine (FLT) PET in patients with newly diagnosed glioma. Eur J Nucl Med Mol Imaging 2008;35:2009-17. https://doi.org/10.1007/s00259-008-0847-5
  77. Jacobs AH, Thomas A, Kracht LW, et al. 18F-fluoro-L-thymidine and 11C-methylmethionine as markers of increased transport and proliferation in brain tumors. J Nucl Med 2005;46:1948-58.
  78. Filss CP, Galldiks N, Stoffels G, et al. Comparison of 18F-FET PET and perfusion-weighted MR imaging: a PET/MR imaging hybrid study in patients with brain tumors. J Nucl Med 2014;55:540-5. https://doi.org/10.2967/jnumed.113.129007
  79. Rahm V, Boxheimer L, Bruehlmeier M, et al. Focal changes in diffusivity on apparent diffusion coefficient MR imaging and amino acid uptake on PET do not colocalize in nonenhancing low-grade gliomas. J Nucl Med 2014;55:546-50. https://doi.org/10.2967/jnumed.113.130732
  80. Yoon JH, Kim JH, Kang WJ, et al. Grading of cerebral glioma with multiparametric MR imaging and 18F-FDG-PET: concordance and accuracy. Eur Radiol 2014;24:380-9. https://doi.org/10.1007/s00330-013-3019-3
  81. Rausch I, Rischka L, Ladefoged CN, et al. PET/MRI for oncologic brain imaging: a comparison of standard MR-based attenuation corrections with a model-based approach for the Siemens mMR PET/MR System. J Nucl Med 2017;58:1519-25. https://doi.org/10.2967/jnumed.116.186148
  82. Verger A, Filss CP, Lohmann P, et al. Comparison of 18F-FET PET and perfusion-weighted MRI for glioma grading: a hybrid PET/MR study. Eur J Nucl Med Mol Imaging 2017;44:2257-65. https://doi.org/10.1007/s00259-017-3812-3
  83. Neuner I, Kaffanke JB, Langen KJ, et al. Multimodal imaging utilising integrated MR-PET for human brain tumour assessment. Eur Radiol 2012;22:2568-80. https://doi.org/10.1007/s00330-012-2543-x
  84. Tachibana I, Nishimura Y, Shibata T, et al. A prospective clinical trial of tumor hypoxia imaging with 18F-fluoromisonidazole positron emission tomography and computed tomography (F-MISO PET/CT) before and during radiation therapy. J Radiat Res 2013;54:1078-84. https://doi.org/10.1093/jrr/rrt033
  85. Sachpekidis C, Thieke C, Askoxylakis V, et al. Combined use of (18)F-FDG and (18)F-FMISO in unresectable non-small cell lung cancer patients planned for radiotherapy: a dynamic PET/CT study. Am J Nucl Med Mol Imaging 2015;5:127-42.
  86. Cher LM, Murone C, Lawrentschuk N, et al. Correlation of hypoxic cell fraction and angiogenesis with glucose metabolic rate in gliomas using 18F-fluoromisonidazole, 18F-FDG PET, and immunohistochemical studies. J Nucl Med 2006;47:410-8.
  87. Mendichovszky I, Jackson A. Imaging hypoxia in gliomas. Br J Radiol 2011;84 Spec No 2:S145-58. https://doi.org/10.1259/bjr/82292521

Cited by

  1. The Molecular Effects of Ionizing Radiations on Brain Cells: Radiation Necrosis vs. Tumor Recurrence vol.9, pp.4, 2018, https://doi.org/10.3390/diagnostics9040127
  2. The Added Value of Diagnostic and Theranostic PET Imaging for the Treatment of CNS Tumors vol.21, pp.3, 2018, https://doi.org/10.3390/ijms21031029
  3. Molecular and Cellular Complexity of Glioma. Focus on Tumour Microenvironment and the Use of Molecular and Imaging Biomarkers to Overcome Treatment Resistance vol.21, pp.16, 2020, https://doi.org/10.3390/ijms21165631
  4. Primary and Metastatic Brain Tumours Assessed with the Brain and Torso [18F]FDG PET/CT Study Protocol-10 Years of Single-Institutional Experiences vol.14, pp.8, 2021, https://doi.org/10.3390/ph14080722