• Title/Summary/Keyword: upstream river

Search Result 710, Processing Time 0.027 seconds

Rural watershed Water Quality and Environmental Improvement through Rearrangement of Irrigation Water Supply Systems (농촌유역 환경개선을 위한 용수공급체계 재정비)

  • Lee, Gwang-Ya;Kim, Hae-Do;Choe, Seon-Hwa
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.515-520
    • /
    • 2005
  • The objective of the study is to assess the water quality improvement resulted from the rearrangement of the irrigation water supply systems at Mankyeong River and Ansung Chun basin. There is a mixed type of watershed composed of urban and rural areas in the region. From the water quality analysis, showed high T-N, T-P concentration in Ansung chun and Mankyeong river caused by paddies separated widely around Ansung chun and Mankyeong river and by runoff of the pollution from the Ansung and Jeonju city. but the upstream of the river showed clean water quality, so if we use the upstream water as river maintenance water for water quality improvement, it is expected to be positive effect for rural environmental aspect.

  • PDF

River Terraces and Geomorphic Development of Subi Basin, Yeongyang (하안단구와 수비분지의 지형발달)

  • Son, Myoung Won
    • Journal of The Geomorphological Association of Korea
    • /
    • v.24 no.2
    • /
    • pp.15-25
    • /
    • 2017
  • Subi basin is located at the crestline of Taebaek mountains. This paper aims to elucidate the geomorphic development of Subi basin through the analysis of river terraces built in Wangpi-cheon and Banbyeon-cheon. Wangpi-cheon flows northeastward from Subi basin, and Banbyeon-cheon flows southward at the west of Subi basin. Absolute age of terrace is measured by means of OSL methodology, long profile of Wangpi-cheon is made up with 10m interval contour line, and the elevation above river bed of high terraces is measured at the end part of terrace. The results are as follow: Firstly, high river terraces of Subi basin, Wangpi-cheon and Banbyeon-cheon are formed about 40 kyr(MIS 3) being interstadial stage of last glacial period. Secondly, the elevation above river bed of high terraces of Wangpi-cheon and Banbyeon-cheon tends to increase toward upstream. It means that the uplift of Taebaek Mountains influences considerably the formation of their terraces. Thirdly, the elevation above river bed of high terraces at the reach from Seomchon to Suha-ri of Wangpi-cheon tends to decrease toward upstream. This section is captured from Banbyeon-cheon flowing in the opposite direction. River piracy has occurred from the time of formation of Suha-ri high terrace to the time of formation of Hantee wind gap. Finally, for fluvial system of Wangpi-cheon to establish dynamic equilibrium, topographic axis will move toward Banbyeon-cheon.

Study on the simulation of emission characteristics and sources contribution of 4-nitrophenol in the Geumho River (금호강 유역에서의 4-nitrophenol 배출 특성과 오염원 기여도 모의 연구)

  • Park, Kyeong-Deok;Yang, Duk-Seok;Lee, In-Jung;Kim, Il-Kyu
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.33 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • In the Geumho River, 4-nitrophenol has been detected, thus it is necessary to investigate the contamination sources in order to prevent the release of this compound. However, the research to estimate the potential source is regarded as complicated research. In this study, the distributions of 4-nitrophenol were simulated and the contribution of the potential sources was estimated using a numerical model(HydroGeoSphere; HGS) and the measuring data of 4-nitrophenol from 2013 to 2017. The altitude data, the land cover data, the flow rates of the tributaries and wastewater treatment plants, and the decay rate of 4-nitrophenol was used as the input data. The results of this research showed that the contribution rates of potential contamination sources in the upstream area were higher than that of the downstream area. Most of the upstream area is the agricultural area, it seemed that 4-nitrophenol was originated from the pesticides. In order to achieve more specific location of sources, an intensive investigation in the upstream is required.

Comparison of Changes in Upstream and Downstream Water Quality of Tributary Rivers: Gyeseong-stream and Hwapo-stream in Nakdongmiryang Watershed (지류하천의 상·하류 수질변화 비교: 낙동밀양 중권역 내 계성천 화포천을 대상으로)

  • Shim, Kyuhyun;Kim, Gyeonghoon;Kim, Seongmin;Kim, Youngseok;Kim, Jin-pil
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.445-452
    • /
    • 2020
  • Tributary is a part of life space for people and a very important place that accommodates rest recreation and other daily activities. absolutely insufficient basic data about water quality and flow rate are available for basin management. Efficient water and basin management systems, which are also supported by local residents can be established by securing such basic data of major tributaries in the Nakdong river system. In this study, the fluctuation characteristics of upstream and downstream water pollution levels were compared using the measurement results of the water environment measurement network and the tributary monitoring project for the gyeseong-stream and Hwapo-stream in the Nakdong-miryang watershed. In 2017, when water pollution is the highest, it was confirmed that the annual average rainfall was the lowest. Although the upstream and downstream water quality tendencies of the Gyeseong-stream are similar, the water quality concentrations of the Gyeseong-stream are relatively different. But although the Hwapo stream has various causes of pollution, there was not much difference in the level of pollution between the upper and lower streams. In addition, both rivers need the ability to purify rivers by securing sufficient water for river maintenance, and if the correlation between water quality items can be inferred through continuous monitoring of tributaries where the aspect of water quality change is unclear, water quality management Determined to be efficient operation.

A Study on the Characteristics of River Sediments and the Rebound Strength of Rock and Sediment in Dong River (동강의 하천 퇴적물의 입자 특성 및 암석의 반발 강도 특성에 대한 연구)

  • Shin, Won Jeong;Kim, Jong Yeon
    • Journal of The Geomorphological Association of Korea
    • /
    • v.26 no.1
    • /
    • pp.41-57
    • /
    • 2019
  • The grain size characteristics of river sediments and the characteristics of bedrock were investigated for the 24km section of the Dong River upstream of the Han River. The bedrock of the study area is various limestone belonging to the Paleozoic Choseon limestone group, and Mesozoic sandstone and conglomerate occur in some areas. Most of the river channel is made of limestone, and most of the river bottom is covered with fluvial sediments. More than 70% of these sediments are sandstone and conglomerate, rather than limestone which forms the basis of the valley. Sediment particles seem to have been supplied upstream of the study area rather supplied from the slope near of the channel. It is difficult to find the statistically significant difference in the shape of the sediment particles of limestones and non-limestones. However, limestones has platy forms rather than block forms, it can be assumed that the limestone was supplied from the surrounding valley wall and transported over a short distance. The particle sizes of DG1~DG2(the upstream section) are decreasing in the downstream direction. However, at DG3, which is a tributary, Jijangcheon, confluence particle size increases and at DG4 particle size increases more. In the case of DG4, it may be influenced by the influx of tributaries, but it also can be supposed as the impact of the large flood in 2002. In the downstream parts(DG5~DG7), the particle size decreases exponentially with distance. The rebound strength of stream sediments and bedrock was measured by using Schmidt hammer. Limestone showed lower rebound strength than non-limestone. According to the results of the sediment and bedrock, it can be seen that the sandstone and conglomerate with high rebound values pass through valley with the relatively low strength limestone. The sediments of limestone were decreased in grain size more rapidly than those of limestone sediments.

Water Quality Improvement in the River through Reformation of Irrigation Water Supply Systems (관개용수 공급체계 변경을 통한 하천의 수질개선)

  • Lee, Kwang-Ya;Kim, Hae-Do;Lee, Jong-Nam;Park, Jong-Hoon
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.540-545
    • /
    • 2006
  • The objective of the study is to assess the water quality improvement resulted from the rearrangement of the irrigation water supply systems at Mankyeong River and Ansung Chun basin. There is a mixed type of watershed composed of urban and rural areas in the region. The water intake facilities for agricultural use such as reservoir, weir and pumping station are generally located at upstream river where the water quality maintains relatively clean. However, this study focuses on moving the water intake to downstream and rearranging the irrigation water supply system, then investigating how effective they are for water quality improvement in the river. When the water intake is moved downstream, the stream flow is increased as much as the amount of irrigation water that is to be taken upstream. The augmented flow which is frequently referred to as environmental flow can function as dilution water for improving the quality of polluted water that is originated from the wastewater in tributaries.

  • PDF

Necessity for Expansion of Total Phosphorus Management in the Geum River Watershed (금강수계에서 총인관리의 확대 필요성)

  • Park, Jae Hong;Lee, Jae Kwan;Oh, Seung Young;Rhew, Doug Hee
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.400-408
    • /
    • 2013
  • Total phosphorus was set as a target indicator to prevent eutrophication and algae growth, etc., in three major rivers (Nakdong River, Geum River and Yeongsang/Seomjin River) for the second phase (2011 ~ 2015) in total maximum daily loads (TMDLs) system. However, total phosphorus management was restrictively introduced, i.e., upstream of the Lake Daechung, in the Geum River watershed. Total phosphorus concentration and trophic levels in downstream of the Lake Daechung (include Mangyeong and Dongjin rivers) were increased more than upstream. Therefore, it is necessary to expand total phosphorus management in all watersheds of the Geum River. If total phosphorus was managed in all area of the Geum River watershed, it is possible to decrease total phosphorus concentration and trophic levels, and solve the unbalanced water quality between up and downstream of the Lake Daechung.

Analysis for the Effect of Channel Contraction for Sedimentation Reduction on the Flood Level and Bed Changes in the Lower Nakdong River (낙동강 하류의 퇴사저감을 위한 하폭축소방법이 홍수위변화 및 하상변동에 미치는 영향 분석)

  • Jang, Eun-Kyung;Ji, Un
    • Journal of Environmental Science International
    • /
    • v.22 no.3
    • /
    • pp.291-301
    • /
    • 2013
  • Sediment from the upstream channel has been deposited near the Nakdong River Estuary Barrage (NREB) due to the mild slope and decreased velocity. The annual mechanical dredging to ensure the flood capacity has been performed to remove the deposited sediment. However, the dredging method is not considered as an effective countermeasure due to high cost and long time to operate. Therefore, many methods for sedimentation reduction have been proposed for NREB. Especially, the channel contraction method to mitigate sedimentation problem by changing the channel geometry from 2 km to 3 km upstream of NREB has been recently suggested as an effective countermeasure. However, there is the possibility that the channel contraction method induces flood level increase compared to original condition. Therefore, it is necessary to investigate quantitatively the flood level changes in the upstream and downstream section due to the channel contraction method for NREB. In this study, water level changes by 10% channel contraction of whole width has been evaluated using the HEC-RAS model and simulated with and without channel contraction for various flood discharge. As a result, water level in the section where the channel was contracted was decreased by 0.02 m and flood level at the upstream of channel contracted was increased up to 0.015 m for the 500-year flood.

Simulation of the Route of 4-Nitrophenol in the Geumho River and Analysis of the Impact of Potential Contamination Sources using a Numerical Model (수치모형을 이용한 금호강 수계 내 4-Nitrophenol의 거동 모의 및 잠재 오염원의 영향 분석)

  • Park, Kyeong-Deok;Shin, Dong-Seok;Yang, Duk-Seok;Lee, Injung;Lim, Young-Kyong;Kim, Il-Kyu
    • Journal of Environmental Science International
    • /
    • v.26 no.2
    • /
    • pp.211-220
    • /
    • 2017
  • For areas with the diverse contamination sources, the change of 4-nitrophenol contamination and impact of potential contamination sources have been evaluated using monitoring data and a numerical model (HydroGeoSphere). The model considered several parameters including land cover, precipitation, and flow rate. And, the model has been performed to investigate the effect of decay rate of 4-nitrophenol. The results of the simulations showed that the influence on 4-nitrophenol in downstream was mainly greater than that in upstream, and the tributaries did not significantly affect the mainstream because of their low flow rates. In addition, the effect of contamination sources was simulated for each section, then the measured data were higher than the corresponding simulated data in most sections of the Geumho river. In particular, the impact of the potential contamination sources in the upstream area was much higher than that in the other area, thus more monitoring data for the upstream area is required.

Analysis of Hydraulic Characteristics by Sediment Protection Weir on Natural River Estuary (자연하도 하구부의 방사보에 의한 수리학적특성 해석)

  • Ahn, Seung-Seop;Choi, Yun-Young
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.4 no.1
    • /
    • pp.51-60
    • /
    • 2001
  • This study examines the effects of removal of the sediment protection weir at Taehwa river mouth on hydraulic and around river environment considering the fact that the effects of the sediment protection weir which is installed to protect water level drop of Ulsan harbor caused by sediments according to flood in Taehwa river, Dong-chun, and so forth may add water quality contamination by flow stagnance in normal and drought period and accumulation of pollutants. The result is as follows. First, it is estimated from the examination of variation characteristics water depth and level for Taehwa river before and after removal of the sediment protection weir that about 0.01m of water depth down according to removal of the sediment protection weir occurs when low flow runs between the sediment protection weir which is located about 2.3km away from the estuary and Samho-gyo which is about 9.0km away from the sediment protection weir, and about 0.01~0.56m(directly upstream point of the sediment protection weir 0.56m, Myongchon-gyo 0.14m, Ulsan-gyo 0.03m, and Taehwa-gyo 0.02m) downs when design flood flows between the sediment protection weir and the upstream of Taehwa-gyo which is 10km away from the sediment protection weir. Therefore, it is thought that variation of hydraulic characteristics of water depth down and so on according to removal of the sediment protection weir is slight because water depth variation is only about 1cm between directly upstream point of the sediment protection weir and Samho-gyo. Next, it is estimated from the examination of variation characteristics of flow velocity for Taehwa river before and after removal of the sediment protection weir that about 0.0lm/s of flow velocity increase occurs between the directly upstream point of the sediment protection weir which is about 2.4km away from the estuary and the directly upstream point of Samho-gyo when low flow runs, and about 0.01~0.44m/s increases between the sediment protection weir and Samho-gyo when design flood flows. Therefore, riverbed erosion by the increased flow velocity is concerned but it is thought that the concern about riverbed erosion is not great because the mean velocity is about 0.07~1.36m/s when low flow runs, and about 1.02~2.41m/s when design flood flows for the sector which experiences the flow velocity variation.

  • PDF