• Title/Summary/Keyword: upsetting process

Search Result 103, Processing Time 0.025 seconds

Investigation on the forging process of HIP rotor for USC power plant (USC 발전용 HIP Rotor의 단조 공정 연구)

  • Kim D. K.;Kim Y. D.;Kang S. T.;Kim D. Y.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.479-482
    • /
    • 2005
  • To improve the efficiency of fossil power plant, the higher steam temperature and pressure are required. Ultra super critical(USC) system meets very well this requirement. The HIP rotor is one of the most important parts of turbine in USC system and its material is easy to crack during hot forging. In this study, the upsetting and cogging process far $12\%Cr$ ESR ingot was analyzed and it is suggested a optimum process to avoid surface crack. The results were verified by test product with 4,200 tonnage press.

  • PDF

Analysis of Void Closure in the Upsetting Process of Large-Ingot (대형강괴 업셋팅공정의 기공압착 해석)

  • 박치용;조종래;양동열;김동진;박일수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.10
    • /
    • pp.1877-1889
    • /
    • 1992
  • Upsetting is performed in open-die press forging to deform metal in all directions in order to enhance soundness of a product and reduce directionality of properties caused by casting. It is necessary to ensure sufficient forging ratio for subsequent cogging operations and consolidate the void along the centerline. To obtain these benefits, the upper die shape (dome and dished shape) is considered as an upsetting parameter. Thermo-viscoplastic finite element analysis has been carried out so as to understand the influence of upper die shape on the effective strain, hydrostatic stress and temperature in the upset-forged ingots without internal defects. The analysis is focused on the investigation into internal void closure in ingots with pipe holes and circular voids. The computational results have shown that the volume fraction of the void is independent of the circular void size and the closure of internal voids is much more influenced by the effective strain than the hydrostatic stress around the void. It is finally suggested that the height reduction must be over 35% for consolidation of internal voids.

Net Shape Forming Process for Ball Stud Using High Strength Micro-Alloyed Cold Forging Steel (냉간 비조질강을 이용한 볼 스터드의 정형가공 공정연구)

  • Yoon, D.J.;Choi, H.J.;Lee, H.W.;Lee, G.A.;Jang, B.L.;Seo, S.L.;Choi, S.
    • Transactions of Materials Processing
    • /
    • v.15 no.8 s.89
    • /
    • pp.562-567
    • /
    • 2006
  • Micro-alloyed steel or heat-treatment-free used in clean technology have been replacing for conventional quenched-and-tempered structural steels since the micro-alloyed forging steel was developed in early 1970s in Germany for saving money of heat treatment, simplified process, short delivery and good productivity. In this paper, ball stud assembled in steering system for automobile was selected to compare conventional process making heat treatment with new process using high strength micro-alloyed steel without heat treatment. The conventional process for ball stud was composed of a total of 6 steps including upsetting, forward extrusion, machining, burnishing and tread rolling with heat treatment and shot blasting. As opposed to conventional process, newly proposed process for ball stud using the clean technology without heat treatment is simplified such as forward extrusion, heading, upsetting, forming having a flange shape and tread rolling. Also net shape forming process to achieve specified process not to include machined step fur manufacturing the ball stud was applied to newly simplified process since micro-alloyed steel is difficult to be formed.

Prediction of Ductile Fracture in Metal Forming Processes (금속성형공정에서 연성파괴예측)

  • 고대철;이진희;김병민;최재찬
    • Transactions of Materials Processing
    • /
    • v.3 no.2
    • /
    • pp.167-177
    • /
    • 1994
  • Most of bulk metal forming processes may be limited by ductile fracture such as surface or internal cracks developing in the workpiece. It is important to identify the conditions within the deforming workpiece which may lead to fracture, and then it is possible to modify the forming processes to produce sound and reliable product. This paper suggests the scheme to simultaneously accomplish prediction of fracture initiation and analysis of deformation in metal forming processes. The Cockcroft-Latham criterion which is successfully applied to a variety of loading situations is used in the present investigation to estimate whether fracture occurs during the deformation process. The numerical predictions and experimental results of two types of metal forming process are compared, axisymmetric extrusion and simple upsetting. The proposed scheme has successfully predicted the fracture initiation found experimentally.

  • PDF

A Study on the Stress and Crystal in Die-Upsetted Nd-Fe-B-Cu Alloys as a Function of Working Temperature (가공온도에 따라 다이업셋한 Nd-Fe-B-Cu 합금의 응력과 결정에 관한 연구)

  • Park, J.D.;Yang, H.S.;Kwak, C.S.;Jeung, W.Y.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.7 no.1
    • /
    • pp.61-71
    • /
    • 1994
  • This study is to investigate the stress distributions, crystal orientations and magnetic properties during die-upsetting according to working temperature of Nd-Fe-B-Cu alloys. The stress distributions in the specimens during compressing process were calculated by a finite element method program(SPID). The calculated stresses were effective stress (${\sigma}_{eff}$), compression stress(${\sigma}_z$), radial direction stress(${\sigma}_r$) rotational direction stress(${\sigma}_e$) and shear stress(${\tau}_{rz}$). The stress distributions of ${\sigma}_z$, obtained by a computer simulation showed that the stress components causing the magnetic alignment during die-upsetting of the cast magnets were very high at the center-part of a specimen, and decreased toward the periphery-part of a specimen. In view of the above results the magnetic properties should be better at the center-part of a specimen than any other parts. But the measured magnetic properties were better at the mid-part. These results should be due to the fact that the specimens were casted. Normally the magnetic properties are affected by the casting process as well as by the stress levels. ${\sigma}_r$, ${\sigma}_e$ are thought to affect the liquid phase flowing and domain patterns, respectively. The influence of ${\tau}_{rz}$ was trivial, ${\sigma}_{eff}$ distributed similar throughout the specimen. The Nd-rich phase appeared at the peripheral of the specimen where the stress level of ${\sigma}_r$, ${\sigma}_z$, was low or the stress level of ${\sigma}_e$ was high. The Nd-rich phase was squeezed out during die-upsetting. This phase had an effect on the crystal orientation and grain growth. The stress distributions of alloy were irregular at the parts of the specimen where the die contacted with specimen.

  • PDF

A Study on the Damage Propagation of an Aircraft Material During Forming (항공기 재료 성형시의 손상진전에 관한 연구)

  • 김위대;김진희;김승조
    • Transactions of Materials Processing
    • /
    • v.4 no.2
    • /
    • pp.131-140
    • /
    • 1995
  • In this paper damage propagation of a material during forming is investigated with the concept of continuum damage mechanics. An isotropic damage model based on the theory of materials of type N is adopted to describe the damage process of a ductile material with large elasto-viscoplastic deformation. The stiffness degradation of the loaded material is chosen as a damage measure. The highly nonlinear equilibrium equations are reduced to the incremental weak form and approximated by the total Lagrangian finite element method. To simulate contact condition, extended interior penalty method with modified coulomb friction law is adopted. The displacement control method along with the modified Riks' continuation technique is used to solve the incremental iterative equations. As numerical examples, upsetting problem and backward extrusion problem are simulated and the results of damage propagation and $J_2$ stress contours with and without friction are presented.

  • PDF

Feasibility Study on Three-Dimensional Backward Tracing Scheme of Rigid-Plastic Finite Element Analysis (강-서성 유한요소 해석에서의 3차원 역추적 기법에 관한 연구)

  • 이진희;강범수;김병민
    • Transactions of Materials Processing
    • /
    • v.4 no.3
    • /
    • pp.267-281
    • /
    • 1995
  • Preform design is one of the critical fields in metal forming. The finite element method(FEM) has been effective in designing preforms and process sequence, for which the backward tracing scheme of the rigid-plastic FEM has been explored. In this work a program using the backward tracing scheme by the rigid-plastic FEM is developed for three-dimensional plastic deformation, which is an extension of the scheme from two-dimensional cases. The calculation of friction between workpiece and die, and handling of boundary conditions during backward tracing require sophisticated treatment. The developed program is applied to upsetting of a rectangular block and to side pressing of a cylindrical workpiece. The results of the two applications show feasibility of the program on three-dimensional plastic deformation.

  • PDF

Hot-Pressed and Die-Upset Mischmetal-Ferroboron Permanent Magnets (핫프레스 및 다이업셋한 미슈레탈-페로보론 영구자석에 관한 연구)

  • ;H. J. Al-Kanani
    • Transactions of Materials Processing
    • /
    • v.10 no.1
    • /
    • pp.30-34
    • /
    • 2001
  • The magnetic and metallurgical characteristics of Mischmetal(MM) -Ferroboron (FeB) Permanent magnets have been investigated by X-ray diffractometer, scanning and transmission electron microscope and vibrating sample magnetometer under hot-pressing and die-upsetting process. The best magnetic properties obtained in these studies were $H_c$=5.8 kOe, $B_r$=5.0 kG with $(BH)_{max}=7.6 MGOe for melt-spun ribbons, $H_c$=3.0 kOe, $B_r$=4.6 kG with $(BH)_{max}$=2.9 MGOe for hot-pressed magnets and $H_c$=1.8 kOe, $B_r$=5.5 kG with $(BH)_{max}$=4.1 MGOe for die-upset magnets. The higher magnetic properties in die-upset magnets were resulted from alignment of the c-axis along the die-upsetting direction.

  • PDF

FE-Analysis on void closure behavior during hot open die forging process (주단조품의 기공형태에 따른 기공압착거동에 관한 연구)

  • Lee, Y.S.;Kwon, Y.N.;Lee, J.H.;Lee, S.W.;Kim, N.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2008.05a
    • /
    • pp.57-60
    • /
    • 2008
  • The studies for internal void closure have been conducted experimentally and numerically for open die forging. The FEM analysis is performed to investigate the deformation behavior of some internal voids in cast ingots during two upsetting stages. The calculated results of void closure behavior are compared with the measured results before and after upsetting. The shapes and sizes of each internal void are scanned by the X-ray scanner. From this result, the criteria for deformation amounts effect on the void closure can be investigated by the types of void. Closed voids could be compressed and eliminated after forging when the applied deformation amounts were larger than the critical effective strains. On the other hand, open voids could not be compressed and removed.

  • PDF