• Title/Summary/Keyword: upper wall lower frame type structure

Search Result 4, Processing Time 0.021 seconds

A Study on the Natural Period Estimation for the Buildings of Upper Wall and Lower Frame Type (상부벽식-하부골조를 가진 복합구조물의고유주기 산정에 관한 연구)

  • 박기수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.170-177
    • /
    • 1999
  • The natural period calculation equations specified in the current building code are empirical formulas that depend on height and material type of the structure. Building with the upper wall and lower frame type is a unique structure which composed of two different structural system This type of structure needs either the deep transfer girder or the thick transfer plate that brings the sudden change of stiffness and mass. Therefore the natural period equations recommended by the current code can not be applied directly. In this study the natural period of building with typical plan obtained by dynamci analysis is compared with that of various codes. Ad approximate estimation equation for the natural period of building with the upper wall and lower frame type obtained by regression analysis is recommended. by the current code can not be applied directly. In this study the natural period of building with typical plan obtained by dynamic analysis is compared with that of various codes, And approximate estimation equation for the natural period of building with the upper wall and lower frame type obtained by regression analysis is recommended.

  • PDF

Study on the Equation of Natural Period of Middle and Low Rise Building of Upper-Walled Lower Frame Type (중저층 상부벽식 하부골조 구조의 고유주기 산정식에 관한 연구)

  • Yoo, Suk-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.25 no.5
    • /
    • pp.60-67
    • /
    • 2021
  • According to the 「Guidelines of Structural Design for Piloti Building」 of the Ministry of Land, Infrastructure and Transport (2018), the natural period of middle and low rise building of upper-walled lower frame type, such as the domestic multiplex house in piloti style, is suggested for safety to apply the existing code formula of the wall structure. However, the current code formula of the wall structure was provided based on actual measurement of high-rise wall-type structures that mainly exhibit bending behavior. So it is considered that it is not suitable for a piloti-type house with four stories or less, where the wall behaves in shear. See also Park et al. (2000) confirmed that the effect of the lower frame part is greater than that of the upper wall part in the natural period of complex structures with 10 or more floors through analytical studies. Therefore, in this study, in order to examine the effect of the lower frame on the natural period of the middle and low-rise piloti structure, the estimation of natural period by the finite element analysis, approximation formula and ccurrent code formula was performed for the target structures with the shear and flexural stiffness of the upper wall and the shear stiffness of the lower frame as variables. As result, it was found that the change in the shear stiffness of the lower frame had a greater effect on the natural period of the whole building than the change in the bending or shear stiffness of the upper wall.

A Study on the Appropriate Response Modification Factor(R) for the Complex Building Based on the Number of Stories of Lower Frame-Upper Wall (하부골조의 층수에 따른 주상복합건물의 정정 반응수정계수에 관한 연구)

  • 최문성;김희철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.4 no.2
    • /
    • pp.13-24
    • /
    • 2000
  • 최근 국내에서 많이 건설되어지고 있는 주상복합 건축물은 하부의 골조형식과 상부의 벽식 구조가 결합된 구조형식을 가지고 있다 따라서 지진 발생시 동일한 형식을 가진 건축물과는 상이하고 복잡한 반응을 보이게 된다 이러한 건축물의 등가정적 해석시 국내 규준에서는 기타구조물로 분류하여 3.5 의 반응수정계수를 적용하고 있다 그러나 이 계수는 검증되어지지 않는 상태로 사용되어지고 있으므로 상당한 위험성을 내포하고 있다 본 연구에서는 단순화한 주상복합 건물의 해석 및 실제의 건물에 대한 3차원 비선형 해석을 통하여 반응수정계수를 유도하였다 유도된 반응수정계수는 ATC 기준과 우리나라 기준의 차이를 고려한 보정을 수행하였다.

  • PDF

Non-linear Time History Analysis of Piloti-Type High-rise RC Buildings (필로티형 고층 RC건물의 비선형시간이력해석)

  • Ko, Dong-Woo;Lee, Han-Seon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 2009
  • Two types of piloti-type high-rise RC building structures having irregularity in the lower two stories were selected as prototypes, and nonlinear time history analysis was performed using OpenSees to verify the analysis technique and to investigate the seismic capacity of those buildings. One of the buildings studied had a symmetrical moment-resisting frame (BF), while the other had an infilled shear wall in only one of the exterior frames (ESW). A fiber model, consisting of concrete and reinforcing bar represented from the stress-strain relationship, was adapted and used to simulate the nonlinearity of members, and MVLEM (Multi Vertical Linear Element Model) was used to simulate the behavior of the wall. The analytical results simulate the behavior of piloti-type high-rise RC building structures well, including the stiffness and yield force of piloti stories, the rocking behavior of the upper structure and the variation of the axial stiffness of the column due to variation in loading condition. However, MVLEM has a limitation in simulating the abrupt increasing lateral stiffness of a wall, due to the torsional mode behavior of the building. The design force obtained from a nonlinear time history analysis was shown to be about $20{\sim}30%$ smaller than that obtained in the experiment. For this reason, further research is required to match the analytical results with real structures, in order to use nonlinear time history analysis in designing a piloti-type high-rise RC building.