• Title/Summary/Keyword: upper dam

Search Result 217, Processing Time 0.031 seconds

Deformation Measurements of Dam using Terrestrial Laser Scanner (지상레이저스캐너를 이용한 댐의 변위관측)

  • Park, Sae-Hoon;Choi, Duk-Hwa;Han, Dong-Yeob
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.1
    • /
    • pp.645-655
    • /
    • 2009
  • Deformations of the dam have been monitored by control points buried in the upper and lower dam of Samrangjin pumped storage power plant. The horizontal and vertical deformation observations performed in 1997, 2002, 2007 are to identity movements of the dam body by comparing and analyzing control points. For that reason, it was difficult to analyze movements of the dam in detail. Therefore, this research has observed surface of the dam using terrestrial laser scanner and estimate movements of the dam by comparing and analyzing scanned and designed surfaces of the dam since building completion. Vertical deformation of upper dam took place in the middle of ridge of dam, maximum cross section, up to 1.5m. In the middle and middle bottom of the downstream slope, vertical deformation was produced 0.75m around SP4-2 point and 0.5m around SP4-4 point. The maximum subsidence of vertical deformation in the lower dam took place in the middle of ridge of dam and upper part of upstream slope and subsidence was analyzed from -0.4 to -1.0m respectively. The result of this research can be used as initial observation to analyze whole movement of the dam in the future.

Integrated Surface-Groundwater Hydrologic Analysis for Evaluating Effectiveness of Groundwater Dam in Ssangcheon Watershed (쌍천 지하댐의 효용성 평가를 위한 지표수-지하수 통합 수문해석)

  • Kim, Nam-Won;Na, Han-Na;Chung, Il-Moon
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.525-532
    • /
    • 2011
  • In this study, the usefulness of underground dam as a means for the sustainable development of groundwater, and its performance in the management of groundwater resources were analyzed. The fully integrated SWAT-MODFLOW was applied to the Ssangcheon watershed in Korea to evaluate the effectiveness of groundwater dam construction. After construction, the groundwater level raised in the upstream area of groundwater dam while lowered in the downstream area. Also, it is shown that the exchange rate of river-aquifer interactions increased in the upper area of the dam. Since the storage capacity of the aquifer largely increased in the upper area of the dam, the exploitable groundwater could be greatly increased as much. This study demonstrated that a groundwater dam was a very useful measure to increase the available storativity of groundwater aquifers. It also represented that the combined analysis using SWAT-MODFLOW was helpful for the design and opeation of groundwater dam in the Ssangcheon watershed.

The Effect of Flood Discharge due to Dam Breach on Downstream Channel (댐붕괴시 홍수가 하천하류에 미치는 영향)

  • Ahn, Sang-Jin;Lee, Jun-Geun;Yeon, In-Sung;You, Hyung-Gyu
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2006.05a
    • /
    • pp.1666-1670
    • /
    • 2006
  • The purpose of this study is to analyze how a downstream channel is affected in case of hypothetical dam failure. The object of it is Hwacheon dam basin within the basin of North Han river. This study has analyzed the influence on Pyeonghwa(Peace) dam and Hwacheon dam supposing that the Imnam dam in North Korea on the upper stream of North Han river is failed hypothetically at the MFWL(maximum flood water level) by a deluge of rain. The model applied at the main study is NWS(National Weather Service) FLDWAV(Flood Wave Routing Model). Dam breach characteristics data are analyzed by making nine hypothetical scenarios on the basis of other studies on the shape and size of dam breach, time of failure and so on. Expected peak discharge through the breach is verified to have the propriety in comparison with empirical function which is developed on the basis of the case of dam breach in the foreign countries and it is observed that peak discharge is more increasing, as the time of breach gets shorter and the breach width gets bigger. As a result of main study, even though the Imnam dam is hypothetically failed down, there has no influence on the Hwacheon dam of the downstream as the extended Pyeonghwa dam on the downstream controls the volume of discharge properly.

  • PDF

Effect of the Heights of Air Dam on the Pressure Distribution of the Vehicle Surface (에어댐의 높이가 차체 표면의 압력변화에 미치는 영향)

  • Park, Jong-Soo;Kim, Sung-Joon
    • Journal of Industrial Technology
    • /
    • v.22 no.B
    • /
    • pp.27-34
    • /
    • 2002
  • 3-D numerical studies are performed to investigate the effect of the air dam height and approaching air velocities on the pressure distribution of notchback road vehicle. For this purpose, the models of test vehicle with four different air dam heights are introduced and PHOENICS, a commercial CFD code, is used to simulate the flow phenomena and to estimate the values of pressure coefficients along the surface of vehicle. The standard $k-{\varepsilon}$ model is adopted for the simulation of turbulence. The numerical results show that the height variation of air dam makes almost no influence on the distribution of the value of pressure coefficient along upper and rear surface but makes strong effects on the bottom surface. That is, the value of pressure coefficient becomes smaller as the height is increased along the bottom surface. Approaching air velocity makes no differences on pressure coefficients. Through the analysis of pressure coefficient on the vehicle surface, one tries to assess aerodynamic drag and lift of vehicle. The pressure distribution on the bottom surface affects more on lift than the pressure distribution on the upper surface of the vehicle does. The increase of air dam height makes positive effects on the lift decrease but no effects on drag reduction.

  • PDF

Aanalysis of Geophysical exploration tendency of C.F.R.D (표면차수벽 석괴댐의 물리탐사 경향 분석)

  • Kim, Jae-Hong;Shin, Dong-Hoon;Im, En-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.871-876
    • /
    • 2010
  • When surface Concrete Face Rock fill Dam constructs than existent center core type rock fill dam, it is much prevalent form in domestic these day by quality control of that is profitable and weather condition etc. of coreZone. C.F.R.D is less research about seismic survey(Refractional Seismic Prospectin, Resistivity Prospecting) of levee body than fill dam. Thus as C.F.R.D seismic survey is less, safety of that consist is short most development flue is high reason. That is not checking target of minuteness safety diagnosis and so on by short operation period. Wish to analyze inquiry incidental and difference with center core type dam and acquire C.F.R.D preservation administration upper necessary inquiry condition forward hereafter.

  • PDF

The Evaluation of Seismic Performance of Dam By Shaking Table Tests (진동대시험을 이용한 댐의 내진성능평가)

  • Hwang, Seong-Chun;Oh, Byung-Hyun;Sim, Hyung-Seob;Kang, Bo-Soon
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.110-117
    • /
    • 2005
  • This paper deals the shaking table tests with 1/100 scaled model followed by Scott & Iai(1989)'s similitude law for OO dam main desging section to understand nonlinear behavior characteristics of concrete dam body by earthquake wave. As earthquake wave, Hachinohe and Elcentro waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For ground maximum acceleration range ($0.3^{\sim}0.9g$), the results showed linear behavior regardless of ground maximum acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8g), it showed that the dam is stable for supporting upper stream part of water tank of dam.

  • PDF

A Study on the Dynamic Behavior of Concrete Dam by Shaking Table Tests (진동대 시험을 이용한 콘크리트 댐의 동적거동 특성 연구)

  • Hwang, Seong-chun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.7 s.100
    • /
    • pp.806-812
    • /
    • 2005
  • This paper adresses the shaking table tests with 1/100 scaled model followed similitude law for OOdam main designing section to understand nonlinear behavior characteristics of concrete dam body by ground motion. As earthquake wave, Hachinohe and El Centre waves were used and acceleration and displacements are measured to analyze behaviors of dam body. For maximum ground acceleration range $(0.3\~0.9 g)$, the results showed linear behavior regardless of maximum 9round acceleration and secured safety of structure. To analyze the behavior of dam after tension cracking, 3 cm-notch was placed at the critical section of over-flowing section. As results of applying Hachinohe wave(0.8 g), Even though tension cracks were formed at over-flowing section by Hachinohe wave(0.8 g), it showed that the dam is stable for supporting upper stream Part of water tank of dam.

The Development and Application of Regional Environmental Education Program Using Environment of Dam-Focusing on the Upper Zone of Hapcheon Dam (Geochang)- (댐 환경을 활용한 지역환경 교육 프로그램의 개발과 적용)

  • Lee, Young-Woo;Nam, Young-Sook
    • Hwankyungkyoyuk
    • /
    • v.17 no.2
    • /
    • pp.26-37
    • /
    • 2004
  • The goal of this paper is to develop a regional environmental education program using a regional environment of dam, and to set up a regional education for sustainable development with applying that program to the students. This environmental education program is based on Hungerford's project, which consists of 4 subjects. They are good and bad influences of dam environment which students can experience easily in daily life. Through the volunteering activities such as discussion, search and observation, pre- and post-test, study of value, presentation and game, students can decide which is a favorable strategy for preserving dam facilities well. And they are encouraged to take part in environmental preservation and practice what they learn everyday in the community. The following are the outcomes of this environmental education program: First, students are much more interested in regional and general environmental problems than before and participate in conservation activities voluntarily. Second, students express their willingness for the prevention of water pollution in Hapcheon Dam by collecting garbages and reducing synthetic detergent. Third, students demand some measures which connect the school program to citizen groups for the prevention of water pollution in Hapcheon Dam.

  • PDF

An Analysis of Streambed Changes Downstream of Daecheong Dam

  • Seo, Hyeong-Deok;Jeong, Sang-Man;Kim, Lee-Hyung;Choi, Kyu-Ho
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.1
    • /
    • pp.103-108
    • /
    • 2008
  • Riverbed change is greatly influenced by artificial factors such as dam construction, gravel collection, and river improvement. This study simulated a long-term bed change based on the GSTARS3 model using actual data from the area downstream of the Geum River Daecheong Dam and compared the estimation with a section of the actual measurement. As a result, it was found that the section of the actual measurement was far lower than the result of the simulation in terms of long-term bed change. While the area downstream of Daecheong Dam displayed approximately an average of 2.29 m of streambed degradation on average while the upper stream area showed approximately 0.63 m of bed degradation over 24 years. In the simulation of the area downstream of Daecheong Dam based on the GSTARS3 model, similar bed degradation was observed. However, a great difference was detected between the result and the actual measurement. According to the cause analysis, the riverbed in the area downstream of Daecheong Dam has continuously degraded due to the dam construction and mass collection of gravel. The mass collection of gravel was the main cause of riverbed change. It was found that about 76% of all riverbed degradation was caused by the mass collection of gravel.

An Evaluation of Stress-Strain Behaviour of Earth-Rockfill Dam and Causes of Crack due to Water Table Fluctuation (수위변동에 따른 Earth-Rockfill 댐의 거동 및 균열원인에 대한 평가)

  • 김상규;한성길;이민형;안상로
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.149-162
    • /
    • 2001
  • Longitudinal cracks have occurred on the crest of dams soon after their construction of two earth-rocfill dams located in Samlangjin. They are a pair of pumped storage dams constructed for generation of electrical power. The upper dam and lower dam are subjected to the variation of water level more than 10m once in a day alteratively. This paper deals with the finding of possible causes for longitudinal cracks about upper dam. The dominant cause was considered to be due to fluctuation of water load, for which numerical analysis was carried out using the hyperbolic model. In order to obtain parameters necessary to the analysis, a series of triaxial tests was performed for both core and rock material. Also dynamic triaxial test was performed to obtain dynamic properties of soils, which could be used as input data to simulate frequent variation of stress change due to the water fluctuation. It was known from the numerical analysis that the confining pressure of upper 4m from the top of the crest become negative after repeating of water load, meaning that tension cracks occurred in the top portion of the crest. The depth of longitudinal cracks has been investigated by digging test pit on the crest. This results agree with the field observation.

  • PDF