• Title/Summary/Keyword: upper bounds for the blow-up time

Search Result 3, Processing Time 0.016 seconds

NEW BLOW-UP CRITERIA FOR A NONLOCAL REACTION-DIFFUSION SYSTEM

  • Kim, Eun-Seok
    • Honam Mathematical Journal
    • /
    • v.43 no.4
    • /
    • pp.667-678
    • /
    • 2021
  • Blow-up phenomena for a nonlocal reaction-diffusion system with time-dependent coefficients are investigated under null Dirichlet boundary conditions. Using Kaplan's method with the comparison principle, we establish new blow-up criteria and obtain the upper bounds for the blow-up time of the solution under suitable measure sense in the whole-dimensional space.

BLOW-UP TIME AND BLOW-UP RATE FOR PSEUDO-PARABOLIC EQUATIONS WITH WEIGHTED SOURCE

  • Di, Huafei;Shang, Yadong
    • Communications of the Korean Mathematical Society
    • /
    • v.35 no.4
    • /
    • pp.1143-1158
    • /
    • 2020
  • In this paper, we are concerned with the blow-up phenomena for a class of pseudo-parabolic equations with weighted source ut - △u - △ut = a(x)f(u) subject to Dirichlet (or Neumann) boundary conditions in any smooth bounded domain Ω ⊂ ℝn (n ≥ 1). Firstly, we obtain the upper and lower bounds for blow-up time of solutions to these problems. Moreover, we also give the estimates of blow-up rate of solutions under some suitable conditions. Finally, three models are presented to illustrate our main results. In some special cases, we can even get some exact values of blow-up time and blow-up rate.

BLOW-UP PHENOMENA FOR A QUASILINEAR PARABOLIC EQUATION WITH TIME-DEPENDENT COEFFICIENTS UNDER NONLINEAR BOUNDARY FLUX

  • Kwon, Tae In;Fang, Zhong Bo
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.31 no.3
    • /
    • pp.287-308
    • /
    • 2018
  • This paper deals with blow-up phenomena for an initial boundary value problem of a quasilinear parabolic equation with time-dependent coefficient in a bounded star-shaped region under nonlinear boundary flux. Using the auxiliary function method and differential inequality technique, we establish some conditions on time-dependent coefficient and nonlinear functions for which the solution u(x, t) exists globally or blows up at some finite time $t^*$. Moreover, some upper and lower bounds for $t^*$ are derived in higher dimensional spaces. Some examples are presented to illustrate applications of our results.