• Title/Summary/Keyword: upgrading technology

Search Result 203, Processing Time 0.026 seconds

Non Conventional Energy Upgrading Process Technology (비재래형 에너지 고부가화 공정 기술)

  • Kim, Yong Heon;Bae, Ji Han
    • Applied Chemistry for Engineering
    • /
    • v.24 no.1
    • /
    • pp.10-17
    • /
    • 2013
  • Heavy oil residue upgrading process was being used in conventional refinery process. Recently, as the importance of non conventional energy development is growing up, the commercial projects of heavy oil upgrading are getting more active than before. For having competitive business model in the resource competition, non conventional energy development should be considered as an important business strategy. In developing oil sands, extra heavy oil, and shale gas, canadian oil sands and extra heavy oil have great importance in substitution of conventional oil consumption. In oil sands development, the bitumen, which is extracted from oil sands, has great value after upgrading or refining process. Similar process is being used current conventional refinery process. The bitumen is highly viscous hydrocarbon. This bitumen includes impurities which can not be treated in conventional refinery process. As this reason, specified process is needed in bitumen or extra heavy oil upgrading process. Moreover, there will be additional specified facilities in the process of production, transportation and marketing. In oil sands, there are various kinds of commercial upgrading process. Extraction, dilution, coking and cracking method were being used commercially.

Continuous Migration Container System for Upgrading Object

  • Yoosanthiah, N.;Khunkitti, A.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.960-964
    • /
    • 2004
  • During system resource improvement process that based on Object-Oriented technology could be affect to the continuous system performance if lack appropriate management and control objects mechanism. This paper proposes a methodology to support continuous system performance and its stability. The adoption is based on Java Container Framework and Collections Framework for object collection. Also includes Software Engineering, Object Migration and Multiple Class Loaders mechanism accommodate to construct Continuous Migration Container (CMC). CMC is a runtime environment provides interfaces for management and control to support upgrading object process. Upgrade object methodology of CMC can be divided into two phase are object equivalence checking and object migration process. Object equivalence checking include object behavior verification and functional conformance verification before object migration process. In addition, CMC use Multiple Class Loaders mechanism to support reload effected classes instead of state transfer in migration process while upgrading object. These operations are crucial for system stability and enhancement efficiency.

  • PDF

Patent Analysis of Oil Sands Bitumen Upgrading Technologies (오일샌드 역청 개질 기술의 특허정보 분석)

  • Lee, Ki Bong;Jeon, Sang Goo;Nho, Nam Sun;Kim, Kwang Ho;Shin, Dae Hyun;Kim, Seon Wook;Kim, Yong Heon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.6
    • /
    • pp.592-599
    • /
    • 2008
  • Oil sands had not received enough attention due to high production cost. However, as oil price significantly increases, oil sands are receiving more and more interest as unconventional crude oil. The value and applicability of oil sands can be enhanced by upgrading oil sands bitumen to produce synthetic crude oil (SCO). This study analyzed 213 oil sands upgrading patents applied between 1969 and 2006 in US, Canada, Japan, Europe, and Korea. The upgrading technologies could be classified into 9 detailed technologies; hydrocracking, coking, thermal cracking, deasphalting, supercritical technology, bio-technology, hydrotreating, gasification, and others. The number of patents applied for oil sands upgrading increased after 1970, reached a maximum in the early 1980, and slowly increases again in recent years. Korea has a lack of technologies for oil sands. Therefore, the technologies for oil sands production and application, specially, upgrading technologies based on accumulated oil refinery technologies need to be developed to increase self-development ratio of energy resource.

Research on the Way to Promote the Value Chain of Animation Digital Publishing in the Context of AI

  • Zhang, Tiemo;Zhang, Mengze;Bae, Ki-Hyung
    • International Journal of Contents
    • /
    • v.15 no.4
    • /
    • pp.107-112
    • /
    • 2019
  • With the development of AI (artificial intelligence), animation digital publishing has been integrated with intellectualization. This paper adopts the theory of the global value chain, and analyzes the basic structure of the animation publishing value chain. Then focuses on the analysis of digital technology and artificial intelligence technology to play an active role in the topic selection and content customization of animation digital publishing products, optimization of publishing platforms, and user experience of publishing products. Finally, it proposes the use of artificial intelligence data analysis and deep learning technology. The purpose of this paper is to realize the upgrading of animation digital publishing, product upgrading, industrial chain upgrading, and identify some promotion methods for the value chain, such as copyright protection.

Patent Analysis of SDA Technology for Heavy Oil Upgrading (중질유 고부가화를 위한 SDA 개발 기술의 특허 정보 분석)

  • Kim, Yong-Heon;Lee, Won-Su;Kim, Jae-Ho;Jeon, Sang-Goo;Na, Jeong-Geol;Nho, Nam-Sun;Lee, Ki-Bong
    • Applied Chemistry for Engineering
    • /
    • v.21 no.4
    • /
    • pp.372-376
    • /
    • 2010
  • Non-conventional energy is considered as important future energy source, as conventional energy has limitation for its capacity. The demand on value added process in heavy oil/oil sand bitumen is increasing in particular. Solvent Deasphalting (SDA) process for Deasphalted Oil (DAO) is used as heavy oil upgrading process in existing refinery process. SDA process for heavy oil upgrading has been already commercialized by leading countries. SDA R&D projects have been carried out actively by those countries. In this study, patent analysis for SDA technology development was carried out. From 1970's, when SDA patents were applied, the patents in Korea, USA, Japan, Canada and Europe were searched and distributed to extraction, recovery, solvent and etc. 334 patents were selected relating to heavy oil upgrading SDA process. The application status of SDA process patents showed a tendency to increase slightly. The number of patent applied was USA patent 131 (39%), Canada patent 83 (25%), Japan patent 35 (11%) and Korea patent 6 (2%). It will be necessary for efficient use of energy resource to support SDA R&D by government.

Power upgrading of WWR-S research reactor using plate-type fuel elements part I: Steady-state thermal-hydraulic analysis (forced convection cooling mode)

  • Alyan, Adel;El-Koliel, Moustafa S.
    • Nuclear Engineering and Technology
    • /
    • v.52 no.7
    • /
    • pp.1417-1428
    • /
    • 2020
  • The design of a nuclear reactor core requires basic thermal-hydraulic information concerning the heat transfer regime at which onset of nucleate boiling (ONB) will occur, the pressure drop and flow rate through the reactor core, the temperature and power distributions in the reactor core, the departure from nucleate boiling (DNB), the condition for onset of flow instability (OFI), in addition to, the critical velocity beyond which the fuel elements will collapse. These values depend on coolant velocity, fuel element geometry, inlet temperature, flow direction and water column above the top of the reactor core. Enough safety margins to ONB, DNB and OFI must-emphasized. A heat transfer package is used for calculating convection heat transfer coefficient in single phase turbulent, transition and laminar regimes. The main objective of this paper is to study the possibility of power upgrading of WWR-S research reactor from 2 to 10 MWth. This study presents a one-dimensional mathematical model (axial direction) for steady-state thermal-hydraulic design and analysis of the upgraded WWR-S reactor in which two types of plate fuel elements are employed. FOR-CONV computer program is developed for the needs of the power upgrading of WWR-S reactor up to 10 MWth.

A Study on a Repair Technique for a Reinforced Concrete Frame Subjected to Seismic Damage Using Prestressing Cable Bracing

  • Lee, Jin Ho;EI-Ganzory, Hisham
    • Architectural research
    • /
    • v.3 no.1
    • /
    • pp.53-60
    • /
    • 2001
  • The proposed building upgrading technique employs prestressing cables to function as bracing to improve the seismic performance during future events. A four-story reinforced concrete moment resisting frame damaged from an ultimate limit state earthquake is assessed and upgraded using the proposed technique. Both existing and upgraded buildings are evaluated in regard of seismic performance parameters performing static lateral load to collapse analysis and dynamic nonlinear time history analysis as well. To obtain realistic comparison of seismic performance between existing and upgraded frames, each frame is subjected to its critical ground motion that has strength demand exceeding the building strength supply. Furthermore, reliability of static lateral load to collapse analysis as a substitute to time history analysis is evaluated. The results reveal that the proposed upgrading technique improves the stiffness distribution compared to the ideal distribution that gives equal inter-story drift. As a result, the upgraded building retains more stories that contribute to energy dissipation. The overall behavior of upgraded building beyond yield is also enhanced due to the gradual change of building stiffness as the lateral load increases.

  • PDF

GTL(Gas To Liquid) Technologies Trend for Synthetic Fuel Production (합성연료 제조를 위한 GTL(Gas To Liquid) 기술동향)

  • Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.717-720
    • /
    • 2011
  • Due to the depletion of fossil fuel, high oil price and global warming issue by green house gas such as CO2, clean synthetic fuel technologies using biomass, especially GTL(Gas To Liquid) technology, have been greatly attracted. This paper has examined and compared the worldwide technologies trend of natural gas reforming reaction, F-T(Fisher-Tropsch) synthesis and upgrading process which are three backbones of GTL technology.

  • PDF

Reaction characteristics of hydrocarbon fuels under various operation conditions of hydro-upgrading process for vegetable oil-based bio-jet fuel production (식물성 오일 기반 바이오항공유 제조공정에서 수소첨가 업그레이딩을 위한 운전조건에 따른 탄화수소화합물의 특성)

  • Kwak, Yeonsu;Jang, Jung Hee;Kim, Sungtak;Ahn, Minhwei;Lee, Eun-Sil;Han, Gi Bo;Jeong, Byung Hun;Han, Jeong Sik;Jeon, Cheol-Hwan
    • Journal of the Korean Applied Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.731-743
    • /
    • 2018
  • In bio-jet fuel production, selecting operating conditions of hydro-upgrading is of great importance to make iso-Paraffin rich hydrocarbons with carbon distribution including jet fuel range. Herein, iso-Paraffin rich biofuel including jet fuel range hydrocarbons ($C_8-C_{16}$) is produced from simultaneous cracking and isomerization using n-Paraffin rich hydrocarbon derived from hydrotreated vegetable oil over 0.5 wt..% Pt/Zeolite catalyst. We report and analyze the yields and compositions in the produced hydrocarbons affected by various operating conditions, such as reaction temperature, reaction pressure, molar ratio of reactants, and weight hourly space velocity. Aforementioned operating conditions not only can help interpret the reaction dynamics of hydro-upgrading, but also further produce bio jet-fuel after distillation.