• Title/Summary/Keyword: unsupervised method

Search Result 402, Processing Time 0.028 seconds

Unsupervised segmentation of Multi -Source Remotely Sensed images using Binary Decision Trees and Canonical Transform

  • Mohammad, Rahmati;Kim, Jung-Ha
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2001.10a
    • /
    • pp.23.4-23
    • /
    • 2001
  • This paper proposes a new approach to unsupervised classification of remotely sensed images. Fusion of optic images (Landsat TM) and radar data (SAR) has beer used to increase the accuracy of classification. Number of clusters is estimated using generalized Dunns measure. Performance of the proposed method is best observed comparing the classified images with classified aerial images.

  • PDF

A Text Detection Method Using Wavelet Packet Analysis and Unsupervised Classifier

  • Lee, Geum-Boon;Odoyo Wilfred O.;Kim, Kuk-Se;Cho, Beom-Joon
    • Journal of information and communication convergence engineering
    • /
    • v.4 no.4
    • /
    • pp.174-179
    • /
    • 2006
  • In this paper we present a text detection method inspired by wavelet packet analysis and improved fuzzy clustering algorithm(IAFC).This approach assumes that the text and non-text regions are considered as two different texture regions. The text detection is achieved by using wavelet packet analysis as a feature analysis. The wavelet packet analysis is a method of wavelet decomposition that offers a richer range of possibilities for document image. From these multi scale features, we adapt the improved fuzzy clustering algorithm based on the unsupervised learning rule. The results show that our text detection method is effective for document images scanned from newspapers and journals.

Automatic Mosaicing of Airborne Multispectral Images using GPS/INS Data and Unsupervised Classification (GPS/INS자료와 무감독 분류를 이용한 항공영상 자동 모자이킹)

  • Jang, Jae-Dong
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.1
    • /
    • pp.46-55
    • /
    • 2006
  • The purpose of this study is a development of an automatic mosaicing for applying to large number of airborne multispectral images, which reduces manual operation by human. 2436 airborne multispectral images were acquired from DuncanTech MS4100 camera with three bands; green, red and near infrared. LIDAR(LIght Detection And Ranging) data and GPS/INS(global positioning system/inertial navigation system) data were collected with the multispectral images. First, the multispectral images were converted to image patterns by unsupervised classification. Their patterns were compared with those of adjacent images to derive relative spatial position between images. Relative spatial positions were derived for 80% of the whole images. Second, it accomplished an automatic mosaicing using GPS/INS data and unsupervised classification. Since the time of GPS/INS data did not synchronized the time of readout images, synchronized GPS/INS data with the time of readout image were selected in consecutive data by comparing unsupervised classified images. This method realized mosaicing automatically for 96% images and RMSE (root mean square error) for the spatial precision of mosaiced images was only 1.44 m by validation with LIDAR data.

  • PDF

A Study on Automatic Vehicle Extraction within Drone Image Bounding Box Using Unsupervised SVM Classification Technique (무감독 SVM 분류 기법을 통한 드론 영상 경계 박스 내 차량 자동 추출 연구)

  • Junho Yeom
    • Land and Housing Review
    • /
    • v.14 no.4
    • /
    • pp.95-102
    • /
    • 2023
  • Numerous investigations have explored the integration of machine leaning algorithms with high-resolution drone image for object detection in urban settings. However, a prevalent limitation in vehicle extraction studies involves the reliance on bounding boxes rather than instance segmentation. This limitation hinders the precise determination of vehicle direction and exact boundaries. Instance segmentation, while providing detailed object boundaries, necessitates labour intensive labelling for individual objects, prompting the need for research on automating unsupervised instance segmentation in vehicle extraction. In this study, a novel approach was proposed for vehicle extraction utilizing unsupervised SVM classification applied to vehicle bounding boxes in drone images. The method aims to address the challenges associated with bounding box-based approaches and provide a more accurate representation of vehicle boundaries. The study showed promising results, demonstrating an 89% accuracy in vehicle extraction. Notably, the proposed technique proved effective even when dealing with significant variations in spectral characteristics within the vehicles. This research contributes to advancing the field by offering a viable solution for automatic and unsupervised instance segmentation in the context of vehicle extraction from image.

Automatic Change Detection Using Unsupervised Saliency Guided Method with UAV and Aerial Images

  • Farkoushi, Mohammad Gholami;Choi, Yoonjo;Hong, Seunghwan;Bae, Junsu;Sohn, Hong-Gyoo
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_3
    • /
    • pp.1067-1076
    • /
    • 2020
  • In this paper, an unsupervised saliency guided change detection method using UAV and aerial imagery is proposed. Regions that are more different from other areas are salient, which make them more distinct. The existence of the substantial difference between two images makes saliency proper for guiding the change detection process. Change Vector Analysis (CVA), which has the capability of extracting of overall magnitude and direction of change from multi-spectral and temporal remote sensing data, is used for generating an initial difference image. Combined with an unsupervised CVA and the saliency, Principal Component Analysis(PCA), which is possible to implemented as the guide for change detection method, is proposed for UAV and aerial images. By implementing the saliency generation on the difference map extracted via the CVA, potentially changed areas obtained, and by thresholding the saliency map, most of the interest areas correctly extracted. Finally, the PCA method is implemented to extract features, and K-means clustering is applied to detect changed and unchanged map on the extracted areas. This proposed method is applied to the image sets over the flooded and typhoon-damaged area and is resulted in 95 percent better than the PCA approach compared with manually extracted ground truth for all the data sets. Finally, we compared our approach with the PCA K-means method to show the effectiveness of the method.

Unsupervised Image Classification through Multisensor Fusion using Fuzzy Class Vector (퍼지 클래스 벡터를 이용하는 다중센서 융합에 의한 무감독 영상분류)

  • 이상훈
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.4
    • /
    • pp.329-339
    • /
    • 2003
  • In this study, an approach of image fusion in decision level has been proposed for unsupervised image classification using the images acquired from multiple sensors with different characteristics. The proposed method applies separately for each sensor the unsupervised image classification scheme based on spatial region growing segmentation, which makes use of hierarchical clustering, and computes iteratively the maximum likelihood estimates of fuzzy class vectors for the segmented regions by EM(expected maximization) algorithm. The fuzzy class vector is considered as an indicator vector whose elements represent the probabilities that the region belongs to the classes existed. Then, it combines the classification results of each sensor using the fuzzy class vectors. This approach does not require such a high precision in spatial coregistration between the images of different sensors as the image fusion scheme of pixel level does. In this study, the proposed method has been applied to multispectral SPOT and AIRSAR data observed over north-eastern area of Jeollabuk-do, and the experimental results show that it provides more correct information for the classification than the scheme using an augmented vector technique, which is the most conventional approach of image fusion in pixel level.

Deep Video Stabilization via Optical Flow in Unstable Scenes (동영상 안정화를 위한 옵티컬 플로우의 비지도 학습 방법)

  • Bohee Lee;Kwangsu Kim
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.2
    • /
    • pp.115-127
    • /
    • 2023
  • Video stabilization is one of the camera technologies that the importance is gradually increasing as the personal media market has recently become huge. For deep learning-based video stabilization, existing methods collect pairs of video datas before and after stabilization, but it takes a lot of time and effort to create synchronized datas. Recently, to solve this problem, unsupervised learning method using only unstable video data has been proposed. In this paper, we propose a network structure that learns the stabilized trajectory only with the unstable video image without the pair of unstable and stable video pair using the Convolutional Auto Encoder structure, one of the unsupervised learning methods. Optical flow data is used as network input and output, and optical flow data was mapped into grid units to simplify the network and minimize noise. In addition, to generate a stabilized trajectory with an unsupervised learning method, we define the loss function that smoothing the input optical flow data. And through comparison of the results, we confirmed that the network is learned as intended by the loss function.

Unsupervised Endmember Selection Optimization Process based on Constrained Linear Spectral Unmixing of Hyperion Image (Hyperion 영상의 제약선형분광혼합분석 기반 무감독 Endmember 추출 최적화 기법)

  • Choi Jae-Wan;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.211-216
    • /
    • 2006
  • The Constrained Linear Spectral Unmixing(CLSU) is investigated for sub-pixel image processing, Its result is the abundance map which mean fractions of endmember existing in a mixed pixel. Compared to the Linear Spectral Unmixing using least square method, CLSU uses the NNLS (Non-Negative Least Square) algorithm to guarantee that the estimated fractions are constrained. But, CLSU gets Into difficulty in image processing due to select endmember at a user's disposition. In this study, endmember selection optimization method using entropy in the error-image analysis is proposed. In experiments which is used hyperion image, it is shown that our method can select endmember number than CLSU based on unsupervised endemeber selection.

  • PDF

Performance of Pseudomorpheme-Based Speech Recognition Units Obtained by Unsupervised Segmentation and Merging (비교사 분할 및 병합으로 구한 의사형태소 음성인식 단위의 성능)

  • Bang, Jeong-Uk;Kwon, Oh-Wook
    • Phonetics and Speech Sciences
    • /
    • v.6 no.3
    • /
    • pp.155-164
    • /
    • 2014
  • This paper proposes a new method to determine the recognition units for large vocabulary continuous speech recognition (LVCSR) in Korean by applying unsupervised segmentation and merging. In the proposed method, a text sentence is segmented into morphemes and position information is added to morphemes. Then submorpheme units are obtained by splitting the morpheme units through the maximization of posterior probability terms. The posterior probability terms are computed from the morpheme frequency distribution, the morpheme length distribution, and the morpheme frequency-of-frequency distribution. Finally, the recognition units are obtained by sequentially merging the submorpheme pair with the highest frequency. Computer experiments are conducted using a Korean LVCSR with a 100k word vocabulary and a trigram language model obtained by a 300 million eojeol (word phrase) corpus. The proposed method is shown to reduce the out-of-vocabulary rate to 1.8% and reduce the syllable error rate relatively by 14.0%.

Multi-scale Cluster Hierarchy for Non-stationary Functional Signals of Mutual Fund Returns (Mutual Fund 수익률의 비정상 함수형 시그널을 위한 다해상도 클러스터 계층구조)

  • Kim, Dae-Lyong;Jung, Uk
    • Korean Management Science Review
    • /
    • v.24 no.2
    • /
    • pp.57-72
    • /
    • 2007
  • Many Applications of scientific research have coupled with functional data signal clustering techniques to discover novel characteristics that can be used for the diagnoses of several issues. In this article we present an interpretable multi-scale cluster hierarchy framework for clustering functional data using its multi-aspect frequency information. The suggested method focuses on how to effectively select transformed features/variables in unsupervised manner so that finally reduce the data dimension and achieve the multi-purposed clustering. Specially, we apply our suggested method to mutual fund returns and make superior-performing funds group based on different aspects such as global patterns, seasonal variations, levels of noise, and their combinations. To promise our method producing a quality cluster hierarchy, we give some empirical results under the simulation study and a set of real life data. This research will contribute to financial market analysis and flexibly fit to other research fields with clustering purposes.