• Title/Summary/Keyword: unsupervised learning

Search Result 480, Processing Time 0.032 seconds

Feature Selection via Embedded Learning Based on Tangent Space Alignment for Microarray Data

  • Ye, Xiucai;Sakurai, Tetsuya
    • Journal of Computing Science and Engineering
    • /
    • v.11 no.4
    • /
    • pp.121-129
    • /
    • 2017
  • Feature selection has been widely established as an efficient technique for microarray data analysis. Feature selection aims to search for the most important feature/gene subset of a given dataset according to its relevance to the current target. Unsupervised feature selection is considered to be challenging due to the lack of label information. In this paper, we propose a novel method for unsupervised feature selection, which incorporates embedded learning and $l_{2,1}-norm$ sparse regression into a framework to select genes in microarray data analysis. Local tangent space alignment is applied during embedded learning to preserve the local data structure. The $l_{2,1}-norm$ sparse regression acts as a constraint to aid in learning the gene weights correlatively, by which the proposed method optimizes for selecting the informative genes which better capture the interesting natural classes of samples. We provide an effective algorithm to solve the optimization problem in our method. Finally, to validate the efficacy of the proposed method, we evaluate the proposed method on real microarray gene expression datasets. The experimental results demonstrate that the proposed method obtains quite promising performance.

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • v.30 no.6
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Cluster Analysis Algorithms Based on the Gradient Descent Procedure of a Fuzzy Objective Function

  • Rhee, Hyun-Sook;Oh, Kyung-Whan
    • Journal of Electrical Engineering and information Science
    • /
    • v.2 no.6
    • /
    • pp.191-196
    • /
    • 1997
  • Fuzzy clustering has been playing an important role in solving many problems. Fuzzy c-Means(FCM) algorithm is most frequently used for fuzzy clustering. But some fixed point of FCM algorithm, know as Tucker's counter example, is not a reasonable solution. Moreover, FCM algorithm is impossible to perform the on-line learning since it is basically a batch learning scheme. This paper presents unsupervised learning networks as an attempt to improve shortcomings of the conventional clustering algorithm. This model integrates optimization function of FCM algorithm into unsupervised learning networks. The learning rule of the proposed scheme is a result of formal derivation based on the gradient descent procedure of a fuzzy objective function. Using the result of formal derivation, two algorithms of fuzzy cluster analysis, the batch learning version and on-line learning version, are devised. They are tested on several data sets and compared with FCM. The experimental results show that the proposed algorithms find out the reasonable solution on Tucker's counter example.

  • PDF

A Survey on Unsupervised Anomaly Detection for Multivariate Time Series (다변량 시계열 이상 탐지 과업에서 비지도 학습 모델의 성능 비교)

  • Juwan Lim;Jaekoo Lee
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.33 no.1
    • /
    • pp.1-12
    • /
    • 2023
  • It is very time-intensive to obtain data with labels on anomaly detection tasks for multivariate time series. Therefore, several studies have been conducted on unsupervised learning that does not require any labels. However, a well-done integrative survey has not been conducted on in-depth discussion of learning architecture and property for multivariate time series anomaly detection. This study aims to explore the characteristic of well-known architectures in anomaly detection of multivariate time series. Additionally, architecture was categorized by using top-down and bottom-up approaches. In order toconsider real-world anomaly detection situation, we trained models with dataset such as power grids or Cyber Physical Systems that contains realistic anomalies. From experimental results, we compared and analyzed the comprehensive performance of each architecture. Quantitative performance were measured using precision, recall, and F1 scores.

근접 문맥정보와 대규모 웹 데이터를 이용한 단어 의미 중의성 해소

  • Kang, Sin-Jae;Kang, In-Su
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 2009.05a
    • /
    • pp.208-211
    • /
    • 2009
  • 본 논문은 구글(Google), 워드넷(WordNet)과 같이 공개된 웹 자원과 리소스를 이용한 비교사학습(Unsupervised learning) 방법을 제안하여 단어 의미의 중의성 문제를 해결하고자 한다. 구글 검색 API를 이용하여 단어의 확장된 근접 문맥정보를 추출하고, 워드넷의 계층체계와 synset을 이용하여 단어 의미 구분정보를 자동 추출한 후, 추출된 정보 간 유사도 계산을 통해 중의성을 갖는 단어의 의미를 결정한다.

  • PDF

Development of Brain-Style Intelligent Information Processing Algorithm Through the Merge of Supervised and Unsupervised Learning I: Generation of Exemplar Patterns for Training (교사학습과 비교사 학습의 접목에 의한 두뇌방식의 지능 정보 처리 알고리즘I: 학습패턴의 생성)

  • 오상훈
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2004.05a
    • /
    • pp.56-62
    • /
    • 2004
  • In the case that we do not have enough number of training patterns because of limitation such as time consuming, economic problem, and so on, we geneterate a new patterns using the brain-style Information processing algorithm, that is, supervised and unsupervised learning methods.

  • PDF

An unsupervised learning of dependency grammar Using inside-outside probability (내부 및 외부 확률을 이용한 의존문법의 비통제 학습)

  • 장두성;최기선
    • Proceedings of the Korean Society for Cognitive Science Conference
    • /
    • 2000.06a
    • /
    • pp.133-137
    • /
    • 2000
  • 구문태그가 부착되지 않은 코퍼스를 사용하여 문법규칙의 확률을 훈련하는 비통제 학습(unsupervised learning) 방법의 대표적인 것이 CNF(Chomsky Normal Form)의 CFG(Context Free Grammar)를 입력으로 하는 inside-outside 알고리즘이다. 본 연구에서는 의존문법을 CNF로 변환하는 기법에 대해 논하고 의존문법을 위해 변형된 inside-outside 알고리즘을 논한다. 또한 이 알고리즘을 사용하여 실제 훈련한 결과를 보이고, 의존규칙과 구문구조 확률을 같이 사용하는 hybrid방식 구문분석기에 적용한 결과를 보인다.

  • PDF

Severity-based Fault Prediction using Unsupervised Learning (비감독형 학습 기법을 사용한 심각도 기반 결함 예측)

  • Hong, Euyseok
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.18 no.3
    • /
    • pp.151-157
    • /
    • 2018
  • Most previous studies of software fault prediction have focused on supervised learning models for binary classification that determines whether an input module has faults or not. However, binary classification model determines only the presence or absence of faults in the module without considering the complex characteristics of the fault, and supervised model has the limitation that it requires a training data set that most development groups do not have. To solve these two problems, this paper proposes severity-based ternary classification model using unsupervised learning algorithms, and experimental results show that the proposed model has comparable performance to the supervised models.

Unsupervised Incremental Learning of Associative Cubes with Orthogonal Kernels

  • Kang, Hoon;Ha, Joonsoo;Shin, Jangbeom;Lee, Hong Gi;Wang, Yang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.25 no.1
    • /
    • pp.97-104
    • /
    • 2015
  • An 'associative cube', a class of auto-associative memories, is revisited here, in which training data and hidden orthogonal basis functions such as wavelet packets or Fourier kernels, are combined in the weight cube. This weight cube has hidden units in its depth, represented by a three dimensional cubic structure. We develop an unsupervised incremental learning mechanism based upon the adaptive least squares method. Training data are mapped into orthogonal basis vectors in a least-squares sense by updating the weights which minimize an energy function. Therefore, a prescribed orthogonal kernel is incrementally assigned to an incoming data. Next, we show how a decoding procedure finds the closest one with a competitive network in the hidden layer. As noisy test data are applied to an associative cube, the nearest one among the original training data are restored in an optimal sense. The simulation results confirm robustness of associative cubes even if test data are heavily distorted by various types of noise.

Implementation of Unsupervised Nonlinear Classifier with Binary Harmony Search Algorithm (Binary Harmony Search 알고리즘을 이용한 Unsupervised Nonlinear Classifier 구현)

  • Lee, Tae-Ju;Park, Seung-Min;Ko, Kwang-Eun;Sung, Won-Ki;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.23 no.4
    • /
    • pp.354-359
    • /
    • 2013
  • In this paper, we suggested the method for implementation of unsupervised nonlinear classification using Binary Harmony Search (BHS) algorithm, which is known as a optimization algorithm. Various algorithms have been suggested for classification of feature vectors from the process of machine learning for pattern recognition or EEG signal analysis processing. Supervised learning based support vector machine or fuzzy c-mean (FCM) based on unsupervised learning have been used for classification in the field. However, conventional methods were hard to apply nonlinear dataset classification or required prior information for supervised learning. We solved this problems with proposed classification method using heuristic approach which took the minimal Euclidean distance between vectors, then we assumed them as same class and the others were another class. For the comparison, we used FCM, self-organizing map (SOM) based on artificial neural network (ANN). KEEL machine learning datset was used for simulation. We concluded that proposed method was superior than other algorithms.