• Title/Summary/Keyword: unstiffened panel

Search Result 8, Processing Time 0.018 seconds

A Study on The Stiffened Barrier Panel Against Rock Fall in Rural Hillside (산간지역 낙석 방지책 보강 방안에 관한 연구)

  • Jeong, Byung Joo
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.7 no.1
    • /
    • pp.129-136
    • /
    • 2005
  • In this paper, barrier panels against falling stones have been studied experimentally with various specimens. Test results show that stiffened barrier panels show more sufficient capacity than unstiffened barrier. Each type barrier panel can be used for various situations. New barrier panel is good for increasing strength and improving environment and maintaining cost down.

  • PDF

XFEM for fatigue and fracture analysis of cracked stiffened panels

  • Kumar, M.R. Nanda;Murthy, A. Ramachandra;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.57 no.1
    • /
    • pp.65-89
    • /
    • 2016
  • This paper presents the development of methodologies using Extended Finite Element Method (XFEM) for cracked unstiffened and concentric stiffened panels subjected to constant amplitude tensile fatigue loading. XFEM formulations such as level set representation of crack, element stiffness matrix formulation and numerical integration are presented and implemented in MATLAB software. Stiffeners of the stiffened panels are modelled using truss elements such that nodes of the panel and nodes of the stiffener coincide. Stress Intensity Factor (SIF) is computed from the solutions of XFEM using domain form of interaction integral. Paris's crack growth law is used to compute the number of fatigue cycles up to failure. Numerical investigations are carried out to model the crack growth, estimate the remaining life and generate damage tolerant curves. From the studies, it is observed that (i) there is a considerable increase in fatigue life of stiffened panels compared to unstiffened panels and (ii) as the external applied stress is decreasing number of fatigue life cycles taken by the component is increasing.

Fracture analysis and remaining life prediction of aluminium alloy 2014A plate panels with concentric stiffeners under fatigue loading

  • Murthy, A. Ramachandra;Mathew, Rakhi Sara;Palani, G.S.;Gopinath, Smitha;Iyer, Nagesh R.
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.681-702
    • /
    • 2015
  • Fracture analysis and remaining life prediction has been carried out for aluminium alloy (Al 2014A) plate panels with concentric stiffener by varying sizes and positions under fatigue loading. Tension coupon tests and compact tension tests on 2014A have been carried out to evaluate mechanical properties and crack growth constants. Domain integral technique has been used to compute the Stress intensity factor (SIF) for various cases. Generalized empirical expressions for SIF have been derived for various positions of stiffener and size. From the study, it can be concluded that the remaining life for stiffened panel for particular size and position can be estimated by knowing the remaining life of corresponding unstiffened panel.

Estimation of Buckling and Ultimate Collapse Behaviour of Stiffened Curved Plates under Compressive Load

  • Park, Joo-Shin;Ha, Yeon-Chul;Seo, Jung-Kwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.1
    • /
    • pp.37-45
    • /
    • 2020
  • Unstiffened and stiffened cylindrically curved plates are often used in ship structures. For example, they can be found on a deck with a camber, a side shell at the fore and aft parts, and the circular bilge part of a ship structure. It is believed that such cylindrically curved plates can be fundamentally modelled using a portion of a circular cylinder. From estimations using cylindrically curved plate models, it is known that the curvature generally increases the buckling strength compared to a flat plate under axial compression. The existence of curvature is also expected to increase both the ultimate and buckling strengths. In the present study, a series of finite element analyses were conducted on stiffened curved plates with several varying parameters such as the curvature, panel slenderness ratio, and web height and type of stiffener applied. The results of numerical calculations on stiffened and unstiffened curved plates were examined to clarify the influences of such parameters on the characteristics of their buckling/plastic collapse behavior and strength under an axial compression.

Plastic Analysis of Steel Plate Shear Panels using Strip Model (스트립 모델을 이용한 강판 전단패널의 소성 해석)

  • Lee, Myung Ho;Moon, Tae Sup
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.1
    • /
    • pp.71-80
    • /
    • 2006
  • The behaviors of steel-plate shear panels were investigated through an experimental and analytical study, using mild steel (S40). Steel-plate shear panels buckle at small loads, and their strength is based on the shear panel's postbuckling strength due to tension field action. In design practice, however, the capacity of steel-plate shear panels is limited to the elastic buckling strength of shear panels. Th e National Standard on Limit States Design of Steel Structures, CAN/CSA-S16.1-94 (1994) contains a guideline for the analysis of thi n, unstiffened, steel-plate shear walls using the strip model. In this paper, the structural capacity of shear panels was evaluated using the results of the experiment and of the strip model analysis.

A Study on the Minimum Weight Design of Stiffened Cylindrical Shells (보강원통셸의 최소중량화설계 연구)

  • 원종진
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.4
    • /
    • pp.630-648
    • /
    • 1992
  • The minimum weight design for simply-supported isotropic or symmetrically laminated stiffened cylindrical shells subjected to various loads (axial compression or combined loads) is studied by a nonlinear mathematical search algorithm. The minimum weight design in accomplished with the CONMIN optimizer by Vanderplaats. Several types of buckling modes with maximum allowable stresses and strains are included as constraints in the minimum weight design process, such as general buckling, panel buckling with either stingers or rings smeared out, local skin buckling, local crippling of stiffener segments, and general, panel and local skin buckling including stiffener rolling. The approach allows the consideration of various shapes of stiffening members. Rectangular, I, or T type stringers and rectangular rings are used for stiffened cylindrical shells. Several design examples are analyzed and compared with those in the previous literatures. The unstiffened glass/epoxy, graphite/epoxy(T300/5208), and graphite/epoxy aluminum honeycomb cylindrical shells and stiffened graphite/epoxy cyindrical shells under axial compression are analyzed through the present approach.

Ultimate strength of initially deflected plate under longitudinal compression: Part I = An advanced empirical formulation

  • Kim, Do Kyun;Poh, Bee Yee;Lee, Jia Rong;Paik, Jeom Kee
    • Structural Engineering and Mechanics
    • /
    • v.68 no.2
    • /
    • pp.247-259
    • /
    • 2018
  • In this study (Part I), an advanced empirical formulation was proposed to predict the ultimate strength of initially deflected steel plate subjected to longitudinal compression. An advanced empirical formulation was proposed by adopting Initial Deflection Index (IDI) concept for plate element which is a function of plate slenderness ratio (${\beta}$) and coefficient of initial deflection. In case of initial deflection, buckling mode shape, which is mostly assumed type in the ships and offshore industry, was adopted. For the numerical simulation by ANSYS nonlinear finite element method (NLFEM), with a total of seven hundred 700 plate scenarios, including the combination of one hundred (100) cases of plate slenderness ratios with seven (7) representative initial deflection coefficients, were selected based on obtained probability density distributions of plate element from collected commercial ships. The obtained empirical formulation showed good agreement ($R^2=0.99$) with numerical simulation results. The obtained outcome with proposed procedure will be very useful in predicting the ultimate strength performance of plate element subjected to longitudinal compression.

Strain energy release rates in the curved spar wingskin joints with pre-embedded delaminations

  • P.K. Mishra;A.K. Pradhan;M.K. Pandit ;S.K. Panda
    • Structural Engineering and Mechanics
    • /
    • v.87 no.1
    • /
    • pp.47-56
    • /
    • 2023
  • Any pre-existed delamination defect present during manufacturing or induce during service loading conditions in the wingskin adherend invariably shows a greater loss of structural integrity of the spar wingskin joint (SWJ). In the present study, inter-laminar delamination propagation at the critical location of the SWJ has been carried out using contact and multi-point constraint finite elements available with commercial FE software (ANSYS APDL). Strain energy release rates (SERR) based on virtual crack closure technique have been computed for evaluation of the opening (Mode-I), sliding (Mode-II) and cross sliding (Mode-III) modes of delamination by sequential release of multi point constraint elements. The variations of different modes of SERR are observed to be significant by considering varied delamination lengths, material properties of adherends and radius of curvature of the SWJ panel. The SERR rates are seen to be much different at the two pre-embedded delamination ends. This shows dissimilar delamination propagation rates. The maximum is seen to occur in the delamination front in the unstiffened region of the wingskin. The curvature geometry and material anisotropy of SWJ adherends significantly influences the SERR values. Increase in the SERR values are observed with decrease in the radius of curvature of wingskin panel, keeping its width unchanged. SWJs made with flat FRP composite adherends have superior resistance to delamination damage propagation than curved composite laminated SWJ panels. SWJ made with Boron/Epoxy (B/E) material shows greater resistance to the delamination propagation.