• Title/Summary/Keyword: unsteady pressure characteristics

Search Result 293, Processing Time 0.026 seconds

Dynamic Characteristics of Thermal Stratification Build-up by Unsteady Natural Convection (비정상 자연대류에 의한 온도성층화의 동특성에 관한 연구)

  • Kang, B.S.;Lee, J.S.;Lee, T.S.;Ro, S.T.
    • The Magazine of the Society of Air-Conditioning and Refrigerating Engineers of Korea
    • /
    • v.17 no.4
    • /
    • pp.382-394
    • /
    • 1988
  • Dynamic characteristics of thermally-forced stratification process in a square enclosure with a linear temperature profile at the side walls have been investigated through flow visualization experiment and numerical analysis. The experiment was performed on air with the Rayleigh numbers of order $10^5$. A particle tracer method is used for the flow visualization and to obtain a sudden linear temperature profile at the side walls copper blocks which already have a linear temperature profile are come into contact with the thin copper plates of the test section. Immediately a meridional circulation is developed and heat transfer takes place from the wall to the interior region by circulation of fluid and finally a thermal stratification is achieved. In the numerical study, QUICK scheme for convective terms, SIMPLE algorithm for pressure correction, and the implicit method for the time marching are adopted for the integration of conservation equations. Comparison of flow visualization and numerical results shows that the developing flow patterns are very similar in dynamic nature even though there is a time lag due to the inevitable time delay in setting up a linear temperature profile. For high Rayleigh numbers, the oscillatory motion is likely to take place and stratified region is extended. However, initial temperature adjustment process is much slower than that for low Rayleigh numbers.

  • PDF

A Study on the Impulse Waves Discharged from the Exit of the Convergent and Divergent Pipes (축소관과 확대관 출구로부터 방출되는 펄스파에 관한 연구)

  • Lee, D.H.;Lee, M.H.;Kweon, Y.H.;Kim, H.D.;Park, J.H.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.12 no.5
    • /
    • pp.346-354
    • /
    • 2002
  • The present study is to investigate the propagation characteristics of the impulse waves discharged from the exit of the convergent and divergent pipes. An experiment is carried out using a shock tube with an open end and is compared to the computation of the axisymmetric, compressible, unsteady Euler equations, which are solved by the second-order total variation diminishing (TVD) scheme. For the computational work, several initial compression waves are assumed inside the pipe so that those are the same to the experimental ones of the shock tube. The results show that the peak pressures of the impulse waves discharged from the exit of convergent and divergent pipes decrease with an increase in the wavelength of the initial compression wave. All of the impulse waves have a strong directivity toward the pipe axis, regardless of the exit type of the pipe employed. The impulse waves discharged from the divergent pipe are stronger than those from the straight pipe, while the impulse waves of the convergent pipe are weaker than those from the straight pipe. It is found that the convergent pipe can play a role of a passive control to reduce the peak pressure of the impulse wave. The present computations represent the experimented impulse waves with a good accuracy.

The Effect of the Variation of Pressure Ratio on the Characteristics of Lateral Forces in an Over-Expanded Nozzle (압력비 변화과정이 과팽창 노즐에서 발생하는 횡력 변동 특성에 미치는 영향)

  • Lee, Jong-Sung;Kim, Heuy-Dong
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.14 no.6
    • /
    • pp.38-44
    • /
    • 2010
  • The shock wave and boundary layer interaction patterns in an over-expanded rocket nozzle are associated with the production of undesirable side-forces during the start-up and shut-down processes of the engine. In the present work, a computational study is carried out to investigate the effect of the transient nozzle pressure ratio (NPR) on the flow fields inside the nozzle. The unsteady, compressible, axisymmetric, Navier-Stocks equations with SST k-${\omega}$ turbulence model are solved using a fully implicit finite volume scheme. NPR is varied from 2.0 to 10.0, in order to simulate the start-up and shut-down processes of the rocket engine. It is observed that the interaction patterns and the hysteresis phenomenon strongly depend on the time variation of NPR, leading to significantly different characteristics in the lateral forces.

Comparison of RANS, URANS, SAS and IDDES for the prediction of train crosswind characteristics

  • Xiao-Shuai Huo;Tang-Hong Liu;Zheng-Wei Chen;Wen-Hui Li;Hong-Rui Gao;Bin Xu
    • Wind and Structures
    • /
    • v.37 no.4
    • /
    • pp.303-314
    • /
    • 2023
  • In this study, two steady RANS turbulence models (SST k-ω and Realizable k-ε) and four unsteady turbulence models (URANS SST k-ω and Realizable k-ε, SST-SAS, and SST-IDDES) are evaluated with respect to their capacity to predict crosswind characteristics on high-speed trains (HSTs). All of the numerical simulations are compared with the wind tunnel values and LES results to ensure the accuracy of each turbulence model. Specifically, the surface pressure distributions, time-averaged aerodynamic coefficients, flow fields, and computational cost are studied to determine the suitability of different models. Results suggest that the predictions of the pressure distributions and aerodynamic forces obtained from the steady and transient RANS models are almost the same. In particular, both SAS and IDDES exhibits similar predictions with wind tunnel test and LES, therefore, the SAS model is considered an attractive alternative for IDDES or LES in the crosswind study of trains. In addition, if the computational cost needs to be significantly reduced, the RANS SST k-ω model is shown to provide relatively reasonable results for the surface pressures and aerodynamic forces. As a result, the RANS SST k-ω model might be the most appropriate option for the expensive aerodynamic optimizations of trains using machine learning (ML) techniques because it balances solution accuracy and resource consumption.

An experimental study on initial dispersion process of diesel fuel spray (디젤유분무의 초기분산과정에 관한 실험적 연구)

  • 허종철;구자왕;양옥룡
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.13 no.2
    • /
    • pp.42-49
    • /
    • 1991
  • This study is to investigate the dispersion characteristics of diesel fuel spray in the initial stage of the beginning of the injection under the condition of room temperature and atmospheric pressure. It is difficult to analyse that the diesel fuel spray in diesel engine has unsteady intermittent spray. So author installed a fuel accumulator and an electromagnetic controller in order to keep the constant fuel injection rate with the time variation. With this modified fuel injection system, spray tip penetration, spray angle and initial spray development process are investigated by instantaneous photographic method. The results obtained in this study are as follows : 1) The initial shape of injection of diesel fuel spray shows the form of non-disintegrated intact core, but the formation of ligaments increasingly grows as the time increases. It can also be shown that fine droplets become disintegrated out from the ligaments. 2) The slope of spray tip penetration was changed to two different tendencies with time. The transition point of the slope is shown at the time of around between 0.09 msec and 0.4 msec from the beginning of injection. This is transition time from non-disintegrated intact core to formation of ligaments.

  • PDF

Study on Steady Flow Effects in Numerical Computation of Added Resistance of Ship in Waves

  • Lee, Jae-Hoon;Kim, Beom-Soo;Kim, Yonghwan
    • Journal of Advanced Research in Ocean Engineering
    • /
    • v.3 no.4
    • /
    • pp.193-203
    • /
    • 2017
  • This study investigated the steady-flow effects present in the numerical computation of the resistance added to a ship in waves. For a ship advancing in the forward direction, a time-domain 3D Rankine panel method is applied to solve the ship motion problem, and the added resistance due to waves is calculated using a near-field method, with the direct integration of the second-order pressure on the hull surface. In the linear potential theory, the steady flow is approximated by the basis potential of a uniform flow or double-body flow in order to linearize the boundary conditions. By applying these two different linearization schemes, the coupling effects between steady and unsteady solutions were examined. Furthermore, in order to analyze the steady-flow effects on the hull geometry, the computation results for two realistic hull forms, a KVLCC2 tanker and DTC containership, were compared. In particular, the mj term, which represents the coupling effects under the body boundary condition, was evaluated considering the geometry of a non-wall-sided ship. Lastly, the characteristics of the linearization schemes were examined in relation to the disturbed waves around a ship and the components of added resistance.

A Study of the Twin Impulse Wave Discharged from the Exit of Two Parallel Tubes (두 평행한 관의 출구로부터 방출되는 트윈파에 관한 연구)

  • Kang, Sung-hwang;Kim, Jae-Ho;Kim, Heuy-dong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.8 s.101
    • /
    • pp.962-967
    • /
    • 2005
  • The twin-impulse wave discharged from two parallel tubes is investigated to see flow patterns, compared with the single impulse wave. In the present study, the merging phenomena and propagation characteristics of the impulse waves are investigated by experiment and numerical computation. The Harten-Yee's total variation diminishing scheme is used to solve the unsteady, two-dimensional, compressible, Euler equations. The Mach number Ms of incident shock wave is lower than 1.5 and the distance between the tubes is between 1.2 and 4.0. In the shock tube experiment, the twin impulse waves are visualized by a Schlieren optical system in order to validate the computational result. It is shown that on the symmetric axis between two parallel tubes, the peak pressure produced by the twin impulse waves and its location strongly depend upon the tube distance and the incident shock Mach number, Ms. The predicted Schlieren images show a good agreement with the measured twin-impulse wave.

Noise Prediction of Hovering Tilt Rotor (정지 비행 시 틸트 로터에서 발생하는 소음 예측)

  • Kim, Kyu-Young;Lee, Seong-kyu;Lee, Duck-Joo;Hong, Suk-Ho;Choi, Jong-Soo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2005.05a
    • /
    • pp.821-825
    • /
    • 2005
  • Tilt rotor aircraft was developed for satisfying VSTOL (vertical short take off and landing) capability and cruise performance. However the noise generated by tilt rotor system causes one of the most serious problems. In this paper, noise characteristics of tilt rotor system in hovering flight are predicted by using free wake method and Lowson's formula. The flow field of the tilt rotor is simulated by using time marching free wake method, and the free field acoustic pressure is calculated through Lowson's formula. The predicted results are compared with experimental data at various observing positions. In the near field, they show good agreement with experimental data regardless of rotating speed and collective pitch angles of 6, 8 and 10 degree, although there are some discrepancies between prediction and experiment in the far field and at the rotating axis in the near field. It seems that the reason of these discrepancies is difference of unsteady force fluctuation between experiment and calculation.

  • PDF

Probability of System Failure of Pipe Network with Surge Tank regarding Unsteady Flow (조압수조가 설치된 상수관망의 부정류를 고려한 불능확률)

  • Kwon, Hyuk-Jae;Lee, Cheol-Eung;Choi, Han-Kuy
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.651-655
    • /
    • 2009
  • 본 연구에서는 컷 집합(cut set)개념과 파이프의 부정류를 위한 수치해석 결과를 이용하여 상수관망의 불능 확률을 정량적으로 산정하는 신뢰성 해석이 수행되었다. 특히 상수관망에서 중요한 운용형태의 하나인 밸브의 개폐효과에 따른 효과를 통하여 불능확률이 산정되었다. 먼저 부정류 수치해석을 위해서 작은 상수관망을 만들고 여러 가지 시나리오를 재현하였다. 이때 부정류 해석을 위해서 특성선법(the method of characteristics)모형이 사용되었다. 밸브의 개폐에 따라서 여러 가지 형태의 부정류가 발생되고 발생된 부정류를 상수관망의 불능확률을 크게 증가시킨다. 상수관망에서 컷 집합을 추출하여 기준지점에 배출유량(demand)가 도달하지 못할 확률을 불능확률로 규정하여 정량적으로 산정한다. 이를 위해서 컷 집합의 총 유량을 시간에 따라 평균하여 COV를 불능확률 산정에 이용한다. 부정류로 인한 파이프 유량의 변동이 심할수록 COV는 증가하고 결국은 컷 집합의 불능확률은 증가하게 된다. 그리고 똑같은 상수관망에 에너지 감쇠장치인 조압수조가 설치되어 부정류 압력파(pressure wave)를 크게 감소시켰을 때 불능확률을 비교하였다. 조압수조와 같은 압력감쇠장치가 상수관망의 부정류 효과와 불능확률을 크게 저감시키는 것을 알 수 있었다. 또한 신뢰성 해석 결과로부터 부정류가 불능확률을 급격히 증가시킨다는 것을 확인하였다. 따라서 부정류 효과를 고려한 신뢰성 해석은 상수관망의 운용, 관리, 감독, 그리고 설계와 계획을 위해서 필수적이라 할 수 있다.

  • PDF

Performance Prediction Method of Hybrid Rocket Motors with Local Variance of Combustion (국부연소 후퇴율을 고려한 하이브리드로켓의 성능예측 기법연구)

  • Cho, Min-Gyung;Heo, Jun-Young;Park, Hyung-Ju;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.1
    • /
    • pp.9-15
    • /
    • 2012
  • An unsteady internal ballistic performance model was proposed to take account for the variance of local regression rate along the grain port of a hybrid rocket combustor. The characteristic parameters of hybrid rocket motor was investigated. The performance model of concern in the study was fairly comparable with the test result. The combustion coefficients and local burning characteristics of a hybrid rocket motor were evaluated. The local variation of the oxidizer mass flow rate results in the changes of local regression rate, pressure, temperature, and gas velocity to flow direction, which was analyzed quantitatively.