• Title/Summary/Keyword: unsteady flow field

Search Result 411, Processing Time 0.023 seconds

CFD Study for Wave Run-up Characteristics Around a Truncated Cylinder with Damper

  • Zhenhao Song;Bo Woo Nam
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.225-237
    • /
    • 2023
  • In this study, numerical simulations for a single fixed truncated circular cylinder in regular waves were conducted to investigate the nonlinear wave run-up under various dampers and wave period conditions. The present study used the volume of fluid (VOF) technique to capture the air-water interface. The unsteady Reynolds-averaged Navier-Stokes (URANS) equation with the k- 𝜖 turbulence model was solved using the commercial computational fluid dynamics (CFD) software STAR-CCM+. First, a systematic spatial convergence study was conducted to assess the performance and precision of the present numerical wave tank. The numerical scheme was validated by comparing the numerical results of wave run-up on a bare truncated cylinder with the experimental results, and a good agreement was achieved. Then, a series of parametric studies were carried out to examine the wave run-up time series around the truncated cylinder with single and dual dampers in terms of the first- and second-order harmonic and mean set-up components. Additionally, the local wave field and the flow velocity vectors adjacent to the cylinder were evaluated. It was confirmed that under short wave conditions, the high position of the damper led to a noticeable increase in the wave run-ups with significant changes in the first- and second-order harmonic components.

Numerical and experimental analysis of aerodynamics and aeroacoustics of high-speed train using compressible Large Eddy Simulation (압축성 대와류모사를 이용한 고속열차의 공력 및 공력소음의 수치적/실험적 분석)

  • Kwongi Lee;Cheolung Cheong;Jaehwan Kim;Minseung Jung
    • The Journal of the Acoustical Society of Korea
    • /
    • v.43 no.1
    • /
    • pp.95-102
    • /
    • 2024
  • Due to technological advances, the cruising speed of high-speed trains is increasing, and aerodynamic noise generated from the flow outside the train has been an important consideration in the design stage. To accurately predict the flow-induced noise, high-resolution generation of sound sources in the near field and low-dissipation of sound propagation in the far field are required. This should be accompanied by a numerical grid and time resolution that can properly consider both temporal and spatial scales for each component of the real high-speed train. To overcome these challenges, this research simultaneously calculates the external flow and acoustic fields of five high-speed train cars of real-scale and at operational running speeds using a threedimensional unsteady Large Eddy Simulation technique. To verify the numerical analysis, the measurements of the wall pressure fluctuation and numerical results are compared. The Ffowcs Williams and Hawking equation is used to predict the acoustic power radiated from the high-speed train. This research is expected to contribute to noise reduction based on the analysis of the aerodynamic noise generation mechanism of high-speed trains.

The Characteristics of Sediment and a Design Method for Preventing Sediment in the beginning Lateral Sewer (단말 오수관거 에서의 퇴적특성과 퇴적방지를 위한 설계법 고찰)

  • Hwang, Hwan Kook;Kim, Young Jin;Han, Sang Jong;Jung, Ho Chan
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.23 no.6
    • /
    • pp.789-797
    • /
    • 2009
  • The flow in the beginning lateral sewer can be characterized as intermittent and unsteady, and a moment maximum flow energy is required to transport fecal solids in the sewer. It is thus difficult to design to satisfy a minimum velocity criteria (0.6m/s), because of the substantially lower discharge in the beginning lateral sewer. This study is the result of a field survey, and aims to determine a design criteria for the minimum slope to prevent sediment in a lateral sewer. The survey performed on the two flat small catchments in Goyang-si consisting of D400mm hume-pipe, aimed to understand the manner in which the scope of a sewer slope has an effect on sediment in the beginning lateral sewer. The survey showed that the sewer slope below 3‰ had sedimentation of 88.7%, while the sewer slope of 3~6‰ had sedimentation of 47.8%. In addition, the minimum design slope was estimated to refer to the result of hydraulic experiments from Public Works Research Institute in Japan. Analysis showed that the D400mm hume pipe should be installed with a slope of 6.5‰ to prevent sediment in the beginning lateral sewer. For future installations, the study results showed that a D300mm plastic pipe requires a minimum slope of 3.5‰, and a D250mm plastic pipe requires a minimum slope of 3.3‰ in the beginning lateral sewer.

Study on Reflected Shock Wave/Boundary Layer Interaction in a Shock Tube (충격파관에서 발생하는 반사 충격파와 경계층의 간섭에 대한 연구)

  • Kim, Dong Wook;Kim, Tae Ho;Kim, Heuy Dong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.7
    • /
    • pp.481-487
    • /
    • 2017
  • The interaction between a shock wave and a boundary layer causes boundary layer separation, shock train, and in some cases, strong unsteadiness in the flow field. Such a situation is also observed in a shock tube, where the reflected shock wave interacts with the unsteady boundary layer. However, only a few studies have been conducted to investigate the shock train phenomenon in a shock tube. In the present study, numerical studies were conducted using the two-dimensional axisymmetric domain of a shock tube, and compressible Navier-Stokes equations were solved to clarify the flow characteristics of shock train phenomenon inside a shock tube. A detailed wave diagram was developed based on the present computational results, which were validated with existing experimental data.

The Throughflow Effects on Natural Convection in Horizontal Porous Layer (수평 다공층에서 수직 관통류가 자연대류 열전달에 미치는 영향에 관한 연구)

  • 서석진
    • Journal of Energy Engineering
    • /
    • v.7 no.2
    • /
    • pp.209-215
    • /
    • 1998
  • This paper investigated the vertical throughflow effects on natural convection due to heating from below in horizontal porous layer. The motion of the fluid in the porous layer is governed by Brinkman-Darcy equation. And compared Critical Rayleigh number in case of throughflow with no throughflow. Investigated Nusslet number, isothermalline and flow with the variation of the strength of throughflow in a constant Rayleigh number. In the numerical analysis, flow is assumed to be two-dimensional and unsteady. The numerical scheme used is a finite-difference method. In the experimental study, Temperature distribution was measured by use of Liquid Crystal film. As a results, indicated that throughflow influences largely on the temperature field and as the strength of throughflow increased, unstability of natural convection decreased. Also it could predict the strength of natural convection with the measured Nusselt number.

  • PDF

Energy effects on MHD flow of Eyring's nanofluid containing motile microorganism

  • Sharif, Humaira;Naeem, Muhammad N.;Khadimallah, Mohamed A.;Ayed, Hamdi;Bouzgarrou, Souhail Mohamed;Al Naim, Abdullah F.;Hussain, Sajjad;Hussain, Muzamal;Iqbal, Zafar;Tounsi, Abdelouahed
    • Advances in concrete construction
    • /
    • v.10 no.4
    • /
    • pp.357-367
    • /
    • 2020
  • The impulse of this paper is to examine the influence of unsteady flow comprising of Eyring-Powell nanofluid over a stretched surface. This work aims to explore efficient transfer of heat in Eyring-Powell nanofluid with bio-convection. Nanofluids possess significant features that have aroused various investigators because of their utilization in industrial and nanotechnology. The influence of including motile microorganism is to stabilize the nanoparticle suspensions develop by the mixed influence of magnetic field and buoyancy force. This research paper reveals the detailed information about the linearly compressed Magnetohydrodynamics boundary layer flux of two dimensional Eyring-Powell nanofluid through disposed surface area due to the existence of microorganism with inclusion the influence of non- linear thermal radiation, energy activation and bio-convection. The liquid is likely to allow conduction and thickness of the liquid is supposed to show variation exponentially. By using appropriate similarity type transforms, the nonlinear PDE's are converted into dimensionless ODE's. The results of ODE's are finally concluded by employing (HAM) Homotopy Analysis approach. The influence of relevant parameters on concentration, temperature, velocity and motile microorganism density are studied by the use of graphs and tables. We acquire skin friction, local Nusselt and motil microorganism number for various parameters.

A Study on the Unsteady Flow Characteristics of a Delta Wing by 3-D Stereo PIV (3-D Stereo PIV에 의한 비정상 델타윙 유동특성에 대한 연구)

  • Kim, Beom-Seok;Lee, Hyun;Kim, Jeong-Hwan;Lee, Young-Ho
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1672-1677
    • /
    • 2004
  • Leading edge extension(LEX) in a highly swept shape applied to a delta wing features the modem air-fighters. The LEX vortices generated upon the upper surface of the wing at high angle of attack enhance the lift force of the delta wing by way of increased negative suction pressure over the surfaces. The present 3-D stereo PIV includes the Identification of 2-D cross-correlation equation, stereo matching of 2-D velocity vectors of two cameras, accurate calculation of 3-D velocity vectors by homogeneous coordinate system, removal of error vectors by a statistical method followed by a continuity equation criterion and so on. A delta wing model with or without LEX was immersed in a circulating water channel. Two high-resolution, high-speed digital cameras($1280pixel{\times}1024pixel$) were used to allow the time-resolved animation work. The present dynamic stereo PIV represents the complicated vortex behavior, especially, in terms of time-dependent characteristics of the vortices at given measuring sections. Quantities such as three velocity vector components, vorticity and other flow information can be easily visualized via the 3D time-resolved post-processing to make the easy understanding of the LEX effect or vortex emerging and collapse which are important phenomena occurring in the field of delta wing aerodynamics.

  • PDF

Calculation of Hydrodynamic Characteristics of Weis-Fogh Type Water Turbine Using the Advanced Vortex Method (개선 와법을 이용한 Weis-Fogh형 수차의 유체역학적 특성계산)

  • Ro, Ki Deok
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.38 no.3
    • /
    • pp.203-210
    • /
    • 2014
  • In this study, the hydrodynamic characteristics of Weis-Fogh type water turbine were calculated by the advanced vortex method. The wing (NACA0010 airfoil) and both channel walls were approximated by source and vortex panels, and free vortices are introduced away from the body surfaces. The distance from the trailing edge of the wing to the wing axis, the width of the water channel and the maximum opening angle were selected as the calculation parameters, the important design factors. The maximum efficiency and the power coefficient for one wing of this water turbine were 26% and 0.4 at velocity ratio U/V=2.0 respectively. The flow field of this water turbine is very complex because the wing moves unsteadily in the channel. However, using the advanced vortex method, it could be calculated accurately.

Wind pressure on a solar updraft tower in a simulated stationary thunderstorm downburst

  • Zhou, Xinping;Wang, Fang;Liu, Chi
    • Wind and Structures
    • /
    • v.15 no.4
    • /
    • pp.331-343
    • /
    • 2012
  • Thunderstorm downbursts are responsible for numerous structural failures around the world. The wind characteristics in thunderstorm downbursts containing vortex rings differ with those in 'traditional' boundary layer winds (BLW). This paper initially performs an unsteady-state simulation of the flow structure in a downburst (modelled as a impinging jet with its diameter being $D_{jet}$) using a computational fluid dynamics (CFD) method, and then analyses the pressure distribution on a solar updraft tower (SUT) in the downburst. The pressure field shows agreement with other previous studies. An additional pair of low-pressure region and high-pressure region is observed due to a second vortex ring, besides a foregoing pair caused by a primary vortex ring. The evolutions of pressure coefficients at five orientations of two representative heights of the SUT in the downburst with time are investigated. Results show that pressure distribution changes over a wide range when the vortices are close to the SUT. Furthermore, the fluctuations of external static pressure distribution for the SUT case 1 (i.e., radial distance from a location to jet center x=$D_{jet}$) with height are more intense due to the down striking of the vortex flow compared to those for the SUT case 2 (x=$2D_{jet}$). The static wind loads at heights z/H higher than 0.3 will be negligible when the vortex ring is far away from the SUT. The inverted wind load cases will occur when vortex is passing through the SUT except on the side faces. This can induce complex dynamic response of the SUT.

Numerical Study of Turbine Blade Surface Gas Temperature with Various RPM and Pyro Starter Pressure (파이로 시동기의 압력변화와 터빈 블레이드 회전수 변화에 따른 충동형 터빈 블레이드 입구의 가스온도 분포 해석)

  • Lee, In-Chul;Byun, Yong-Woo;Koo, Ja-Ye;Lee, Sang-Do;Kim, Kui-Soon;Moon, In-Sang;Lee, Soo-Young
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.94-97
    • /
    • 2008
  • As the partial admission turbine has a intrinsically unsteady and three dimensional flow region, numerical calculation time of these study has been too long time. The numerical analysis for gas temperature of turbine blade surface has been performed to investigate development of temperature with various pyro start pressure. Computations have been carried out several turbine rotational speeds in the range from 0 to 16000 rpm and inlet conditions with 1423K, 7.2MPa. As a result, the more rotational speed and pyro starter pressure of turbine increased, the more turbine blade's temperature decreased. It is also found that flow field of turbine blade inlet area at pyro starter pressure of 5.75MPa and rotational speed of 12100 rpm formed surface temperature uniformly.

  • PDF