• Title/Summary/Keyword: unsteady effects

Search Result 436, Processing Time 0.025 seconds

A theoretical study on the extinction of the premixed flame in a tube caused by a logitudinal velocity variation (축방향 유속변동에 의한 관내 예혼합화염의 소화특성에 관한 이론적 연구)

  • Kim, Nam-Il;Shin, Hyun-Dong;Bae, Choong-Sik
    • 한국연소학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.111-118
    • /
    • 2001
  • Many previous researches on the premixed flame in a tube have treated the unsteady flame behaviors but more detailed and fundamental research has been necessary. The study on the flame stabilization condition in a tube and the unsteady behaviors were carried out in recent years. In this paper, a mean velocity variation larger than the burning velocity was introduced to the stabilized flame for a period longer than the reaction time scale in order to examine the unsteady behavior of flame propagation. Through our previous work it was found that the effects of non-unity Lewis number on the flame extinction was negligible in the extinction by the boundary layer even though they were important in the extinction by the acoustic instability. In this paper we carried out an analytic approach to explain the previous experimental results. It showed that the heat loss, from a flame to the wall, is not a sufficient condition but a required one for the growth of the extinction boundary layer. In addition, the quenching and the flame stretch, under a strong unsteady flow field, are the main causes of the eventual extinction.

  • PDF

Measurement of Unsteady Loading Noise from Hovering Rotor with Partially Inclined Ground (국부적으로 기울어진 지면을 고려한 제자리비행 로터의 비정상 하중 소음 측정)

  • Jang, Ji-Sung;Lee, Yong-Woo;Lee, Duck-Joo
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.140-143
    • /
    • 2008
  • Experiments are performed to consider the ground effects on unsteady loading and acoustic generation. Partially inclined plate is used to maximize the unsteadiness of the rotor. Indirect method to recognize the unsteady effect is used by measuring the noise in the normal direction from the rotor plane. The experiment is conducted with a square plate of about $9m^2$ and one half of the plate is placed parallel with the rotor plane and the other half is inclined. The height of the plate and the angle of the inclined plate can be changed. Helicopter noise is also measured at the 4 different positions to study the directivity of the rotor noise. The distance between microphone and rotor hub is 1.3m. Tonal noise and broad band noise are measured and analyzed. Thickness noise, steady loading noise and unsteady loading noise are investigated from the rotor noise measurement.

  • PDF

An Approximate Analytical Solution for the Unsteady Close-Contact Melting on a Flat Surface with Constant Heat Flux (등열유속에 의한 평판위 비정상 접촉융해에 대한 근사적 해석해)

  • Yoo, Hoseon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1726-1734
    • /
    • 1998
  • This paper focuses on the unsteady close-contact melting phenomenon occurring between a phase change material kept at its melting temperature and a flat surface on which constant heat flux is imposed. Based on the same simplifications and framework of analysis as the case of constant surface temperature, an approximate analytical solution which depends only on the liquid-to-solid density ratio is successfully derived. In order to keep consistency with the known solution procedure, both the dimensionless wall heat flux and the Stefan number are properly redefined. The obtained solution proves to agree quite well with the published numerical data and to be capable of resolving the fundamental features of unsteady close-contact melting, especially in the presence of the solid-liquid density difference. The density ratio directly affects the film growth rate and the initial value of solid descending velocity, thereby controlling the duration of unsteady process. The effects of other parameters can be evaluated readily from the steady solution which is implied in the normalized result. Since the dimensionless surface temperature for the present boundary condition increases from zero to unity along the evolution path of the liquid film thickness, the unsteady process lasts longer than that for the case of isothermal heating.

ANALYSIS OF UNSTEADY OSCILLATING FLOW AROUND TWO DIMENSIONAL AIRFOIL AT HIGH ANGLE OF ATTACK (고받음각 2차원 에어포일 주위의 비정상 유동의 진동 특성에 관한 연구)

  • Yoo, J.K.;Kim, J.S.
    • Journal of computational fluids engineering
    • /
    • v.18 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • Missile and fighter aircraft have been challenged by low restoring nose-down pitching moment at high angle of attach. The consequence of weak nose-down pitching moment can be resulting in a deep stall condition. Especially, the pressure oscillation has a huge effect on noise generation, structure damage, aerodynamic performance and safety, because the flow has strong unsteadiness at high angle of attack. In this paper, the unsteady aerodynamics coefficients were analyzed at high angle of attack up to 50 degrees around two dimensional NACA0012 airfoil. The two dimensional unsteady compressible Navier-Stokes equation with a LES turbulent model was calculated by OHOC (Optimized High-Order Compact) scheme. The flow conditions are Mach number of 0.3 and Reynolds number of $10^5$. The lift, drag, pressure, entropy distribution, etc. are analyzed according to the angle of attack. The results of average lift coefficients are compared with other results according to the angle of attack. From a certain high angle of attack, the strong vortex formed by the leading edge are flowing downstream as like Karman vortex around a circular cylinder. The primary and secondary oscillating frequencies are analyzed by the effects of these unsteady aerodynamic characteristics.

Numerical Visualization of the Unsteady Shock Wave Flow Field in Micro Shock Tube

  • Arun, Kumar R.;Kim, Heuy-Dong
    • Journal of the Korean Society of Visualization
    • /
    • v.10 no.1
    • /
    • pp.40-46
    • /
    • 2012
  • Recently micro shock tube is extensively being used in many diverse fields of engineering applications but the detailed flow physics involved in it is hardly known due to high Knudsen number and strong compressibility effects. Unlike the macro shock tube, the surface area to volume ratio for a micro shock tube is very large. This unique effect brings many complexities into the flow physics that makes the micro shock tube different compared with the macro shock tube. In micro shock tube, the inter- molecular forces of working gas can play an important role in specifying the flow characteristics of the unsteady shock wave flow which is essentially generated in all kinds of shock tubes. In the present study, a CFD method was used to predict and visualize the unsteady shock wave flows using the unsteady compressible Navier-Stokes equations, furnished with the no-slip and slip wall boundary conditions. Maxwell's slip equations were used to mathematically model the shock movement at high Knudsen number. The present CFD results show that the propagation speed of the shock wave is directly proportional to the initial pressure and diameter of micro shock tube.

Steady and Unsteady State Characteristics of Length Effects about Linear Pintle Nozzle (직선형 핀틀 노즐의 길이비에 따른 정상상태와 비정상상태 특성 연구)

  • Jeong, Kiyeon;Kang, Dong-Gi;Jung, Eunhee;Lee, Daeyeon;Kim, Dukhyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.22 no.3
    • /
    • pp.28-39
    • /
    • 2018
  • In this study, numerical simulations were performed for steady and unsteady state characteristics of length effects on linear pintle nozzles using the overset grid method. Nozzles and pintles are created separately by an auto grid generation program to use the overset grid method. Appropriate turbulent models and numerical methods are selected for the validation of simulations. Pintle shapes are chosen from five types, with differences in the ratio of length and diameter. The longer the pintle length, the greater the thrust and thrust coefficient. The chamber pressure tendency of steady-state and unsteady-state are different for various pintle velocities. The thrust of the nozzle exit responds to changes in the nozzle throat in the unsteady-state, and the speed of pressure propagation wave generated by movement of the pintle is considered to predict the major factor of performance.

Effects of Change in Heat Release Rate on Unsteady Fire Characteristics in a Semi-Closed Compartment (반밀폐된 구획에서 발열량 변화에 따른 비정상 화재특성)

  • Hwang, Cheol-Hong
    • Fire Science and Engineering
    • /
    • v.26 no.2
    • /
    • pp.75-83
    • /
    • 2012
  • An experimental study was conducted to investigate the effects of change in heat release rate on unsteady fire characteristics of under-ventilated fire in a semi-closed compartment. A standard doorway width of the full-scale ISO 9705 room was modified to 0.1 m and the flow rate of heptane fuel was increased linearly with time using a spray nozzle located at the center of enclosure. Temperature, heat flux, species concentrations and heat release rate were continuously measured and then global equivalence ratio (GER) concept was adopted to represent the unsteady thermal and chemical characteristics inside the compartment. It was observed that there was a significant difference in unsteady behavior between global and local combustion efficiency, and the GERs predicted by ideal and measured heat release rate were also shown different results in time. The unsteady behaviors of temperature, heat flux and species concentrations were represented well using the GER concept. It was important to note that CO concentration was gradually decreased with the increase in GER after reaching its maximum value in the range of 2.0~3.0 of global equivalence ratio. In addition, the experimental data on unsteady thermal and chemical behaviors obtained in a semi-closed compartment will be usefully used to validate a realistic fire simulation.

Performance Prediction of the 1-Stags Axial Fan using Steady Coupled Blade Row Calculation Model (정상 간섭 익렬 계산 모델을 용한 1단 축류 송풍기의 성능 예측)

  • Sohn, Sang-Bum;Joo, Won-Gu;Cho, Kang-Rae
    • 유체기계공업학회:학술대회논문집
    • /
    • 1998.12a
    • /
    • pp.49-54
    • /
    • 1998
  • The flow inside an axial turbomachinery with multi-stage can be characterized as unsteady phenomena. In order to predict accurately these complex unsteady flow patterns including rotor-stator interaction effects, enormous computer resources are required. So it is not compatible in preliminary design process. In this study, steady coupled blade row flow with rotor-stator interaction solver is developed using interrow mixing model and used to predict the performance of the axial fan. To verify the computational method, the calculations are compared with experimental results and show satisfactory agreement with them. The interaction effects on the performance of the axial fan have also been studied by comparing the results of steady coupled blade row and steady single blade row flow calculation.

  • PDF

3-Dimensional Computations of the Weak Shock Wave Discharged from the Exit of Duct (관출구로부터 방출되는 약한 충격파에 관한 3 차원 수치해석)

  • Kweon, Yong-Hun;Shin, Hyun-Dong;Kim, Heuy-Dong;Lee, Dong-Hoon
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1742-1747
    • /
    • 2003
  • When a shock wave is discharged from the exit of a duct, complicated flow is formed near the duct exit. The flow field is much more complicated under the ground effects or any other objects near the exit of a duct, such as the circumstance near the exit of the high-speed railway tunnel. The resulting flow is essentially three-dimensional unsteady with the effects of strong compressibility. In the current study, three-dimensional flow fields of the weak shock wave which is discharged from the exit of a duct are numerically investigated using a CFD method. Computations are performed for the weak shock wave in the range below 1.5. The results obtained show that the directivity and magnitude of the weak shock discharged strongly depend upon the Mach number of initial shock wave and are significantly influenced by the ground effects.

  • PDF

Effects of Non-Uniform Inflow on Aerodynamic Behaviour of Horizontal Axis Wind Turbine

  • KIKUYAMA Koji;HASEGAWA Yutaka;KARIKOMI Kai
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.17-22
    • /
    • 2002
  • Non-uniform and unsteady inflow into a Horizontal Axis Wind Turbine (HAWT) brings about an asymmetric flow field on the rotor plane and an unsteady aerodynamic load on the blades. In the present paper effects of yawed inflow and wind shear are analyzed by an inviscid aerodynamic model based on the asymptotic acceleration potential method. In the analysis the rotor blades are represented by spanwise and chordwise pressure distribution composed of analytical first-order asymptotic solutions for the Laplace equation. As the actual wind field experienced by a HAWT is turbulent, the effects of the turbulence are also examined using the Veers' model.

  • PDF