• Title/Summary/Keyword: unsteady combustion

Search Result 191, Processing Time 0.023 seconds

Characteristics of the Gasoline Spray near Impinging Wall in Suction Flow (흡입유동 중 충돌벽면 근처에서 가솔린 분무특성)

  • Kim, Won-Tae;Kang, Shin-Jae;Rho, Byung-Joon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.24 no.10
    • /
    • pp.1285-1293
    • /
    • 2000
  • In port fuel injection system of SI engines, injected fuel is impinged onto the surface of intake valves and port-wall, and then formed the wall flow under the cold start operation. Wall flows entrained into the cylinder result in the unsteady and nonuniform mixture formation. Therefore, the spray impingement to the wall is considered as having negative influences such as lowering combustion efficiency and causing unburned hydrocarbon emissions. This study investigates the spray characteristics of the wall impinging air-assist spray in suction air flow. A PDPA was used to analyze the flow characteristics under the different conditions such as impingement angle and supplied air. Experimental data concerning the impinging sprays has been obtained in the vicinity of the wall. Measured droplets divided into the pre-impinging droplets which denote as the positive normal velocities and post-impinging droplets that describe as the negative normal velocities for the suction flow. Their velocities, size distributions and SMD are comparatively analyzed before and after the impingement.

Characteristics of Tumble Flow in Cylinder of 4 Valve Gasoline Engine by Using Particle Tracking Method (입자 추적법을 이용한 4 밸브 가솔린 기관의 실린더 내 텀블 유동 특성)

  • Lee, Chang-sik;Chon, Mun-soo;Chung, Sung-hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.9
    • /
    • pp.1178-1184
    • /
    • 1999
  • The in-cylinder flow field of gasoline engine comprises unsteady compressible turbulent flows caused by the intake port, combustion chamber geometry and the change of the spatial shape. Thus the quantitative analysis of the in-cylinder bulk flow plays an important role in the improvement of engine performances and the reduction of exhaust emission. The influences of tumble intensifying valve (TIV) and swirl intensifying valve (SIV), and various intake-flow conditions are compared with the tumble ratio obtained by the measured results of the in-cylinder gas flow. In order to obtain the quantitative analysis of the in-cylinder gas flows of gasoline engine this investigation applied the particle tracking method to the analysis of gas flow characteristics. Various intake conditions such as tumble and swirl intensifying valve, the deactivated condition of one valve among two intake valves, and the other factors of gas flow are considered.

Numerical Simulation of In-Cylinder Flow for the Axi-symmetric Model Engine by Low Reynolds Number k-ε Turbulence Model (저레이놀즈수 k-ε 난류모형에 의한 축대칭 모형기관 실린더내 유동의 수치해석)

  • Kim, W.K.;Choi, Y.D.
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.2 no.1
    • /
    • pp.38-50
    • /
    • 1994
  • To improve the efficiency of internal combustion engines, it is necessary to understand mixed air-fuel in-cylinder flow processes accurately at intake and compression strokes. There is experimental and numerical methods to analyse in-cylinder flow process. In numerical method, standard $k-{\varepsilon}$ model with wall function was mostly adopted in in-cylinder flow process. But this type model was not efficiently predicted in the near wall region. Therefore in the present study, low Reynolds number $k-{\varepsilon}$ model was adopted near the cylinder wall and standard $k-{\varepsilon}$ model in other region. Also QUICK scheme was used for convective difference scheme. This study takes axisymmetric reciprocating model engine motored at 200rpm with a centrally located valve, incorporated 60 degree seat angie, and flat piston surface excluding inlet port. Because in-cylinder flow processes are undergoing unsteady and compressible, averaged cylinder pressure and inlet velocity at arbitrary crank angle are determined from thermodynamic analytic method and incylinder states at that crank angle are iteratively determined from the numerical analytic method.

  • PDF

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.281-284
    • /
    • 2008
  • The flow of combustor in scramjet engine is supersonic speed. So residence time and mixing ratio are very important factors for efficient combustion. This study used open cavity on fuel/air mixing model and laser schlieren was carried out to investigate flow characteristics around a jet orifice and a cavity. A source of illumination has 10 ns endurance time so it can observe unsteady flow characteristics efficiently. Pressure was measured by varying momentum flux ratio. And the change of critical ignition point was observed to change of momentum flux ratio.

  • PDF

Performance Prediction Method of Hybrid Rocket Motors with Local Variance of Combustion (국부연소 현상을 고려한 하이브리드로켓의 성능예측 기법연구)

  • Cho, Min-Gyung;Heo, Jun-Young;Park, Hyung-Ju;Kim, Jin-Kon;Moon, Hee-Jang;Sung, Hong-Gye
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.517-521
    • /
    • 2009
  • A unsteady internal ballistic analysis model was proposed to take account for the variance of local variance of pressure and velocity along the grain surface of a hybrid rocket combustor. The model of concern in the study was fairly comparable with the test result. The local variation of the oxidizer mass flow rate along grain surface results in chamber pressure, regression rate, and gas velocity change along its flow direction.

  • PDF

Numerical Study of Combustion Characteristics Inside a Micro-Tube Combustor (마이크로 튜브 연소기의 연소특성에 대한 수치해석 연구)

  • Oh Chang Bo;Choi Byung Il;Han Yong Shik;Kim Myung Bae
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.12 s.243
    • /
    • pp.1352-1359
    • /
    • 2005
  • Unsteady simulations were performed to investigate the flame structure and the dynamic behavior of a premixed flame exposed to the wall heat loss. A 3-step global reaction mechanism was adopted in this study. Simulations were performed for two tube combustors with inner diameters($d_i$) of 1mm and 4mm. The material of tube combustor was assumed to be a Silicon Nitride($Si_{3}N_4$). The heat loss from the outer tube wall was controlled by adjusting the amount of convective and radiative heat loss. A conical premixed flame could be stabilized inside a tube of $d_i=4mm$. The flame stability inside a tube of $d_i=4mm$ combustor was not much sensitive to the amount of heat loss. In case of a tube of $d_i=1mm$, an oscillating flame was observed in very low heat loss condition and a flame could not be sustained in realistic heat loss condition.

A Study for Predictions of In-Cylinder Residual Gas Fraction in SI Engines (SI 엔진 내부의 잔류가스 추정 기법에 관한 연구)

  • Kim, Sung-Cheol;Lee, Sang-Jin;Kim, Duk-Sang;Ohm, In-Yong;Cho, Yong-Seok
    • Proceedings of the KSME Conference
    • /
    • 2001.11b
    • /
    • pp.903-908
    • /
    • 2001
  • Residual gas acts as a diluent which results in reducing the in-cylinder temperature as well as the flame speed, significantly affecting fuel economy, NOx emissions and combustion stability. Therefore it is important to determine the residual gas fraction as a function of the engine operating parameters accurately. However, the determination of the residual gas fraction is very sophisticated due to the unsteady state of induction and exhaust process. There has been little work toward the development of a generally applicable model for quantitative predictions of residual gas fraction. In this paper, a simple model for calculating the residual gas fraction in SI engines was formulated. The effects of engine operating parameters on the residual gas were also investigated. The amount of fresh air was evaluated through AFR and fuel consumption. After this, from the intake temperature and pressure, the amount of total cylinder-charging gas was estimated. The residual fraction was derived by comparing the total charging and fresh air. This results coincide with measured value very well.

  • PDF

Study on the flickering behavior of propane/air and methane/air premixed flame confined in a tube (관내 프로판/공기와 메탄/공기 화염의 펄럭임 현상에 대한 연구)

  • Guahk, Young-Tae;Lee, Dae-Keun;Oh, Kwang-Chul;Shin, Hyun-Dong
    • 한국연소학회:학술대회논문집
    • /
    • 2006.04a
    • /
    • pp.26-31
    • /
    • 2006
  • Flickering behaviors of lean premixed flame of propane/air and methane/air flame anchored by a pilot flame in a tube were investigated. Unsteady behaviors of the flame were monitored by a high speed ICCD camera and the flickering frequency was defined as the number of flame curvatures passing a fixed spatial point in a second. Unlike previous studies in which flames are in open condition so that the flickering mechanism is an unstable interaction of hot buoyant products with the ambient air, flames in this study are surrounded by a tube which means they are not open to ambient air, so that there is no interaction between hot buoyant products and ambient air. Despite the fact, there exists flickering phenomena and the flickering frequency ranges from 10 Hz to 50 Hz which is wider compared to previous studies. We relate the flickering mechanism to flame-generated vorticity and analytic solution for locally approximated flow is used. As a result, the relationship between flickering wavelength and dimensionless vorticity is acquired and the cause of higher range of flickering frequency is explained.

  • PDF

An Analysis of Flow Phenomena in Shock Tube System Design(I)-Comparison of Experimental and Computation Result- (충격파관 장치설계를 위한 유동현상의 해석(1)-계산치와 실험치의 비교-)

  • 정진도;수곡행부
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.5
    • /
    • pp.1218-1226
    • /
    • 1994
  • The shock tube is a useful device for investigating shock phenomena, spray combustion, unsteady gas dynamics, etc. Therefore, it is necessary to analyze exactly the flow phenomena in shock tube. In this study, the mechanics of its reflected shock zone has been investigated by using of the one-dimensional gas dynamic theory in order to estimate the transition from initial reflection of shock wave region. Calulation for four kinds of reflected shock tube temperature (i.e. (a) 1388 K (b) 1276 K (c) 1168 K (d) 1073 K) corresponding to the experimental conditions have been carried out sumarized as follows. (1) The qualitative tendency is almost the same as in that conditions in region of reflected wave region. (2) High temperature period (reflected shock wave temperature) $T_{5}$, exists 0-2.65 ms. (3) Transition period from temperature of reflection shock wave is far longer than the calculated one. This principally attributed to the fact that the contact surface is accelerated, also, due to the release of energy by viscoity effect. This apparatus can advance the ignition process of a spray in a ideal condition that involved neither atomization nor turbulent mixing process, where, using a shock tube, a column of droplets freely from atomizer was ignited behind a reflected shock.

Experimental Study on Fuel/Air Mixing using Inclined Injection in Supersonic Flow (경사 분사에 의한 초음속 유동 연료-공기 혼합에 관한 실험적 연구)

  • Lee, Dong-Ju;Jeong, Eun-Ju;Kim, Chae-Hyoung;Jeung, In-Seuck
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.4
    • /
    • pp.9-15
    • /
    • 2009
  • The flow of combustor in scramjet engine has supersonic speed so that the residence time and mixing ratio are very important factors for the efficient combustion. This study used open cavity(L/D=4.8) as a fuel/air mixing model. Laser schlieren visualization and pressure measurement were carried out to observe the flow characteristics around a jet orifice and a cavity at the time of fuel injection. As a result of 10ns laser schlieren, unsteady flow which was around the cavity could be observed effectively. Pressure was measured that momentum flux ratio(J) was changed. And the change of critical ignition point could be observed by the momentum flux ratio changed.