• Title/Summary/Keyword: unsteady Stokes problem

Search Result 34, Processing Time 0.031 seconds

NUMERICAL SIMULATION OF UNSTEADY MISSILE STAGING SYSTEM (미사일 단분리 시스템의 비정상 유동장 해석)

  • Yoon Y. H.;Kwon K. B.;Hong S. K.
    • Journal of computational fluids engineering
    • /
    • v.10 no.4 s.31
    • /
    • pp.24-31
    • /
    • 2005
  • A dynamic simulation on the missile staging system is conducted with numerical techniques. Both Euler equations and Navier-Stokes equations are numerically solved respectively. The dynamic simulation of two moving bodies is fully integrated into the computational fluid dynamics solution procedure. The Chimera grid scheme is applied in this simulation for unsteady supersonic flow analysis with dynamic modeling. The objective of the study is to investigate the problem pertaining to possible unstability in missile staging. In addition, the computational comparison between in viscid and viscid flow solvers is also performed in this study.

Numerical Analysis of Flow around Propeller Rotating Beneath Free Surface (자유수면 아래에서 회전하는 프로펠러 주위 유동 수치 해석)

  • Park, Il-Ryong
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.6
    • /
    • pp.427-435
    • /
    • 2015
  • This paper provides the numerical results of a simulation of the flow around a propeller working beneath the free surface. A finite volume method is used to solve the unsteady Reynolds averaged Navier-Stokes (URANS) equations, where the wave-making problem is solved using a volume-of-fluid (VOF) method. The numerical analysis focuses on the propeller wake structure affected by the free surface, where we consider another free surface boundary condition that treats the free surface as a rigid wall surface. The propeller wake under the effect of these two free surface conditions shows a reduction in the magnitude of the longitudinal and vertical flow velocities, and its vortical structures strongly interact with the free surface. The thrust and torque coefficient under the free surface effect decrease about 3.7% and 3.1%, respectively. Finally, the present numerical results show a reasonable agreement with the available experimental data.

Numerical Study of Defrost Phenomenon of Automobile Windshield (자동차 전방 유리면 성에 전산 해빙해석)

  • 박만성;황지은;박원규;장기룡
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.11 no.2
    • /
    • pp.157-163
    • /
    • 2003
  • This work was undertaken for the numerical analysis of defrosting phenomena of automobile windshield. To analyze the defrost, the flow and temperature field of cabin interior, heat transfer through the windshield glass, and phase change of the frost should be analyzed simultaneously. The flow field was obtained by solving the 3-D unsteady Navier-Stokes equation and the temperature field was computed by energy equation. The phase-change process of Stefan problem was solved by enthalpy method. For code validation, the temperature field of the driven cavity was calculated. The result of calculation shows a good agreement with the other numerical results. Then, the present code was applied to the defrosting analysis of a real automobile and, also, a good agreement with experiment was obtained.

NUMERICAL SIMULATIONS OF TWO DIMENSIONAL INCOMPRESSIBLE FLOWS USING ARTIFICIAL COMPRESSIBILITY METHOD (가상 압축성 기법을 이용한 이차원 비압축성 유동의 수치모사)

  • Lee, H.R.;Yoo, I.Y.;Kwak, E.K.;Lee, S.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2010.05a
    • /
    • pp.389-396
    • /
    • 2010
  • In this paper, a new computational code was developed using Chorin's artificial compressibility method to solve the two-dimensional incompressible Navier-Stokes equations. In spatial derivatives, Roe's flux difference splitting was used for the inviscid flux, while central differencing was used for the viscous flux. Furthermore, AF-ADI with dual time stepping method was implemented for accurate unsteady computations. Two-equation turbulence models, Menter's $k-{\omega}$ SST model and Coakley's $q-{\omega}$ model, hae been adopted to solve high-Reynolds number flows. A number of numerical simulations were carried out for steady laminar and turbulent flow problems as well as unsteady flow problem. The code was verified and validated by comparing the results with other computational results and experimental results. The results of numerical simulations showed that the present developed code with the artificial compressibility method can be applied to slve steady and unsteady incompressible flows.

  • PDF

Numerical Simulation on the Free Surface using implicit boundary condition (내재적 경계 조건을 이용한 자유표면 유동 수치해석)

  • Lee G. H.;Baek J. H.
    • Journal of computational fluids engineering
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1999
  • This paper describes a numerical method for predicting the incompressible unsteady laminar three-dimensional flows with free-surface. The Navier-Stokes equations governing the flows have been discretized by means of finite-difference approximations, and the resulting equations have been solved via the SIMPLE-C algorithm. The free-surface is defined by the motion of a set of marker particles and the interface behaviour was investigated by means of a "Lagrangian" technique. Using the GALA concept of Spalding, the conventional mass continuity equation is modified to form a volumetric or bulk-continuity equation. The use of this bulk-continuity relation allows the hydrodynamic variables to be computed over the entire flow domain including both liquid and gas regions. Thus, the free-surface boundary conditions are imposed implicitly and the problem formulation is greatly simplified. The numerical procedure is validated by comparing the predicted results of a periodic standing waves problems with analytic solutions. The results show that this numerical method produces accurate and physically realistic predictions of three-dimensional free-surface flows.

  • PDF

Flow-Induced Vibration Analysis for Cascades with Stator-Rotor Interaction and Viscosity Effect (스테이터-로터 상호간섭 및 점성효과를 고려한 케스케이드의 유체유발 진동해석)

  • Oh, Se-Won;Kim, Dong-Hyun;Kim, Yu-Sung;Park, Oung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.11a
    • /
    • pp.848-854
    • /
    • 2006
  • In this study, a computational analysis system has been developed in order to investigate flow-induced vibration(FIV) phenomenon for general stator-rotor cascade configurations. Relative movement of the rotor with respect to stator is reflected by modeling independent two computational domains. Fluid domains are modeled using the unstructured grid system with dynamic moving and local deforming methods. Unsteady, Reynolds-averaged Navier-Stokes equations with one equation Spalart-Allmaras and two-equation SST $k-\omega$ turbulence models are solved for unsteady flow problems. A fully implicit time marching scheme based on the Newmark direct integration method is used flow computing the coupled governing equations of the fluid-structure interaction problem. Detailed FIV responses for different flow conditions are presented with respect to time and vibration characteristics are also physically investigated in the time domain.

  • PDF

Dynamic response of heat and mass transfer in blood flow through stenosed bifurcated arteries

  • Charkravarty S.;Sen S.
    • Korea-Australia Rheology Journal
    • /
    • v.17 no.2
    • /
    • pp.47-62
    • /
    • 2005
  • The present study deals with a mathematical model describing the dynamic response of heat and mass transfer in blood flow through bifurcated arteries under stenotic condition. The geometry of the bifurcated arterial segment possessing constrictions in both the parent and the daughter arterial lumen frequently appearing in the diseased arteries causing malfunction of the cardiovascular system, is formulated mathematically with the introduction of the suitable curvatures at the lateral junction and the flow divider. The blood flowing through the artery is treated to be Newtonian. The nonlinear unsteady flow phenomena is governed by the Navier-Stokes equations while those of heat and mass transfer are controlled by the heat conduction and the convection-diffusion equations respectively. All these equations together with the appropriate boundary conditions describing the present biomechanical problem following the radial coordinate transformation are solved numerically by adopting finite difference technique. The respective profiles of the flow field, the temperature and the concentration and their distributions as well are obtained. The influences of the stenosis, the arterial wall motion and the unsteady behaviour of the system in terms of the heat and mass transfer on the blood stream in the entire arterial segment are high­lighted through several plots presented at the end of the paper in order to illustrate the applicability of the present model under study.

Parallel Computation of a Flow Field Using FEM and Domain Decomposition Method (영역분할법과 유한요소해석을 이용한 유동장의 병렬계산)

  • Choi Hyounggwon;Kim Beomjun;Kang Sungwoo;Yoo Jung Yul
    • Proceedings of the KSME Conference
    • /
    • 2002.08a
    • /
    • pp.55-58
    • /
    • 2002
  • Parallel finite element code has been recently developed for the analysis of the incompressible Wavier-Stokes equations using domain decomposition method. Metis and MPI libraries are used for the domain partitioning of an unstructured mesh and the data communication between sub-domains, respectively. For unsteady computation of the incompressible Navier-Stokes equations, 4-step splitting method is combined with P1P1 finite element formulation. Smagorinsky and dynamic model are implemented for the simulation of turbulent flows. For the validation performance-estimation of the developed parallel code, three-dimensional Laplace equation has been solved. It has been found that the speed-up of 40 has been obtained from the present parallel code fir the bench mark problem. Lastly, the turbulent flows around the MIRA model and Tiburon model have been solved using 32 processors on IBM SMP cluster and unstructured mesh. The computed drag coefficient agrees better with the existing experiment as the mesh resolution of the region increases, where the variation of pressure is severe.

  • PDF

A Numerical Analysis on the solution of Poisson Equation by Direct Method (직접법을 이용한 Poisson 방정식 수치해법에 관하여)

  • Y.S. Shin;K.P. Rhee
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.32 no.3
    • /
    • pp.62-71
    • /
    • 1995
  • In the numerical analysis of incompressible unsteady Navier-stokes equation, large time is required for solving the pressure Poisson equation of the elliptic type at each time step. In this paper, a numerical analysis by the direct method is carried out to solve the pressure Poisson equation and the computing time is analyzed as mesh size increases. The pressure Poisson equation can be transformed to the boundary value problem by the Green theorem. The computing time for the convolution type of the domain integral can be reduced by using F.F.T. and the computing time in the direct method depends entirely on obtaining the solution of the boundary value problem. The numerical analysis on the known solutions is carried out and compared for the verification of the direct method. And the numerical analysis on the body boundary and domain decomposition problem are carried out with the computing time less than O($n^{3}$) in the (n.n) mesh.

  • PDF

ANALYSIS OF FLOW FIELD AROUND NON-LIFTING FORWARD FLIGHT ROTOR USING LOW MACH NUMBER PRECONDITIONING (저마하수 예조건화 기법을 이용한 무양력 전진 비행 로터 주위 유동장 해석)

  • Kim, Jee-Woong;Park, Soo-Hyung
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2008.03a
    • /
    • pp.251-255
    • /
    • 2008
  • Flow field around helicopter involves incompressible flow near the blade root and compressible flow at the blade tip. A problem occurs for low Mach number flow due to the stiffness of the governing equations. Time-derivative preconditioning techniques have been incorporated to reduce the stiffness that occurs at low speed region. The preconditioned form of the compressible Navier-Stokes and Euler equations is used. Computations are performed for the Caradonna-Tung's hovering and non-lifting forward flight case. Computational results are in good agreement with the experimental data.

  • PDF