• Title/Summary/Keyword: unstable factor

Search Result 286, Processing Time 0.026 seconds

Instability of Magnetized Ionization Fronts

  • Kim, Woong-Tae;Kim, Jeong-Gyu
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.78.1-78.1
    • /
    • 2014
  • An ionization front (IF) surrounding an H II region is a sharp interface through which a cold neutral gas makes transition to a warm ionized phase by absorbing UV photons from central massive stars. We investigate the structure and instability of a plane-parallel D-type IF threaded by magnetic fields parallel to the front. We find that magnetic fields increase the maximum propagation speed of the IFs, while reducing the expansion factor, defined as the density ratio of neutral to ionized phases. IFs become unstable to distortional perturbations due to gas expansion across the fronts, exactly analogous to the Darrieus-Landau instability of ablation fronts in terrestrial flames. The growth rate of the IF instability is proportional linearly to the perturbation wavenumber as well as the upstream flow speed. The IF instability is stabilized by gas compressibility and becomes completely quenched when the front is D-critical. The instability is also stabilized by magnetic pressure when the perturbations propagate in the direction perpendicular to the fields. When the perturbations propagate in the direction parallel to the fields, on the other hand, it is magnetic tension that reduces the growth rate, completely suppressing the instability when ${\beta}$ < 1.5, with ${\beta}$ denoting the square of the ratio of the sound speed to the Alfven speed in the pre-IF region. When the front experiences an acceleration, the IF instability cooperates with the Rayleigh-Taylor instability to make the front more unstable. We discuss potential effects of IF instability on the evolution and dynamics of IFs in the interstellar medium.

  • PDF

A Study on the Evaluation Method of the Operation Stability of a Torque Converter Mounted on Industrial Vehicle (산업차량용 토크컨버터의 작동 안정성 평가 방법에 대한 연구)

  • Kim, Beom-Soo;Lim, Won-Sik;Cha, Suk-Won
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.91-98
    • /
    • 2007
  • This paper presents the induced mathematical modeling equations for evaluating the operation stability with automatic transmission of heavy duty vehicle. This theoretical approach indicates that linearized governing equations of system can be converted into eigen-value problems. if the eigen-value has positive number, we can predict the engine operating point locates an unstable operating region. To be a stable state, the unstable operating point diverges toward a stable point which is able to maintain uniform velocity. Based on the previous theoretical analysis, we carry out dynamic simulation to show the behavior of engine operating point and torque converter in transient state. As a result of the dynamic simulation, the suggested theoretical method is found to be reasonable for evaluating the operation stability of a torque converter. In addition, the numerical results explain the engine stops and fluctuating phenomenon in reality.

Reliable Conversion and Compensation for Temperature of STT (지능형 온도 전송기의 시스템 안정성과 온도 보상)

  • Lee, Dong-Kyu;Park, Jae-Hyun;Kim, Young-Su;Cho, Young-Hak
    • Proceedings of the KIEE Conference
    • /
    • 1998.11b
    • /
    • pp.403-406
    • /
    • 1998
  • There are two cases of error occurrence of STT(Smart Temperature Transmitter). One is that because of unstable reference voltage, data from A/D converter is not reliable. The other is that because of change of room temperature, this change affects conversion of A/D converter. In this paper, we show algorithms be adapted to STT for reliable conversion of A/D converter through a experiment and compensation for temperature change. In a experiment, we collect data from reference voltage and ground then calculate nominal value of these at constant temperature during A/D converter initialization or at any conversion time. Algorithm for compensation for unstable reference voltage calculates a correction factor and adapts it to compensation for malfunction of A/D converter. Algorithm for compensation for variation of room temperature is come from linearization of thermistor but is adapted to zener diode, not thermistor, therefor we have less effort for compensation for temperature and have a idea that it can be adapted to A/D converter system.

  • PDF

Computational Study of Automotive Drum Brake Squeal (자동차 드럼 브레이크의 스퀼 전산 해석 연구)

  • Jung, Taeksu;Cho, Chongdu
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.22 no.7
    • /
    • pp.16-22
    • /
    • 2014
  • Automotive NVH on brake operation is mainly caused by a coupling action of vehicle speed and inter parts friction and its frequency occurs over a broad band of 0.1 kHz~10 kHz. Especially, squeal noise, being a self-excited vibration generated by friction force between drum and lining, occurs over 1 kHz and consequently dynamic instability is induced when friction energy is applied to a brake vibration system. The squeal strongly depends on nonlinear properties influenced by the material of lining, velocity of vehicle, and the dynamic properties of a brake system. The dynamic properties are considered as a main influential design factor to squeal noise, however the analysis of the properties are rarely facilitated due to arbitrariness of shape by wearing down. In this paper, we research generating tendency of squeal noise through complex eigenvalue analysis, tracking drum brake's unstable modes in accordance with the wear shape of drum and lining such as tapered and bellmouth shape, and analyze computed unstable modes by variable shapes.

The Impact of Job Stress of the Cabin Crew on the Service Quality During COVID-19 era

  • Ri-Hyun SHIN;Ki-Woong KIM;Suk-Hoon CHUNG
    • Journal of Distribution Science
    • /
    • v.22 no.5
    • /
    • pp.117-129
    • /
    • 2024
  • Purpose: This research aims to explore the ramifications of job stress on cabin crews within the air service distribution sector, specifically examining its impact on service quality through mediating variables such as job satisfaction and engagement during the pandemic era. Research design, data and methodology: The study is based on a sample size of 312 individuals, exclusively comprising cabin crews employed in the airline industry. Methodologically, Confirmatory Factor Analysis (CFA) and Structural Equation Modeling (SEM) were employed for statistical analysis. Results: The findings reveal that both performance evaluation and job responsibility exerted a significant impact on both job satisfaction and job engagement. Furthermore, job engagement demonstrated a substantial influence on service quality. However, in contrast, factors like unstable employment and the working environment showed no significant impact on either job satisfaction or engagement. Additionally, job satisfaction did not exert a significant influence on service quality. Conclusions: These insights will offer the valuable guidance to the airline industry in preparing for unforeseen external environments that may affect the industry. As the aviation sector navigates the challenges posed by the pandemic, understanding and addressing the intricate relationships among job stress, satisfaction, engagement, and service quality will be crucial for effective industry resilience and adaptation.

Dialogical design of fuzzy controller using rough grasp of process property

  • Ishimaru, Naoyuki;Ishimoto, Tutomu;Akizuki, Kageo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10b
    • /
    • pp.265-271
    • /
    • 1992
  • It is the purpose of this paper to present a dialogical designing method for control system using a rough grasp of the unknown process property. We deal with a single-input single-output feedback control system with a fuzzy controller. The process property is roughly estimated by the step response, and the fuzzy controller is interactively modified according to the operator's requests. The modifying rules mainly derived from computer simulation are useful for almost every process, such as an unstable process and a non-minimum phase process. The fuzzy controller is tuned by taking notice of four characteristics of the step response: (1) rising time, (2) overshoot, (3) amplitude and (4) period of vibration. The tuning position of the controller is fourfold: (1) antecedent gain factor GE or GCE, (2) consequent gain factor GDU, (3) arrangement of the antecedent fuzzy labels and (4) arrangement of the control rules. The rules give an instance to the respective items of the controller in an effective order. The modified fuzzy PI controller realizes a good response of a stable process. However, because the GDU tuning becomes difficult for the unstable process, it is necessary to evaluate the stability of the process from the initial step response. The fuzzy PI controller is applied to the process whose initial step response converges with GDU tuning. The fuzzy PI controller with modified sampling time is applied to the process whose step response converges under the repeated application of the GDU tuning. The fuzzy PD controller is applied to the process whose step response never converges by the GDU tuning.

  • PDF

A Study on Obstacle Factors at the Mutual Access of Towed Trailer of Car-Ferry between Korea and China using Fuzzy-AHP (Fuzzy-AHP를 활용한 한·중 카페리 피견인 트레일러 상호주행 시 장애요인에 관한 연구)

  • Sung, Ki-Deok;Jeon, Jun-Woo;Yeo, Gi-Tae
    • Journal of Navigation and Port Research
    • /
    • v.39 no.6
    • /
    • pp.515-521
    • /
    • 2015
  • The purpose of this study was to analyze the weights of obstacle factors against mutual access of towed trailers of car-ferry between South Korea and China using Fuzzy-AHP. To this end, factors were first selected through literature research and finally selected through in-depth interviews with a group of experts in cargoes who are currently in car-ferry companies. Selected high rank obstacle factors included unstable service provision, limited policy support, and additional costs being incurred and among them, unstable service provision was identified as the most serious obstacle factor through analysis. Eleven measurement variables selected include insufficient supply of container yard, trailer insurance and management issues, insufficient special equipment, insufficient specialized manpower, limited input service courses, insufficient marketing and public relations strategies, and increasing transportation costs and among them, increasing equipment returning costs due to unbalanced cargo gathering were identified as the most serious obstacle factor through analysis followed by limited input service courses, insufficient special equipment, delays in procedures, and occurrence of additional procedures in order of precedence.

Development of Rail-transport Operation Control in Consideration of the Stability Variation of Railway Embankment under Rainfall (강우시 사면안전성 변화를 고려한 열차운전규제 개발)

  • 신민호;김현기;김정기
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.06a
    • /
    • pp.13-22
    • /
    • 2003
  • Train speed and infiltration of rainfall causes railway embankment to be unstable and may result in failure. Therefore, the variation in the safety factor of railway embankment should be analyzed as the function of rainfall intensity, rainfall duration, and train speed and the study is accomplished using numerical analysis program. Based on unsaturated soil engineering, the variables in the shear strength function and permeability function are also defined and used for the numerical model for evaluation of railway embankments under rainfall. As a result of the study, in order to secure the safety of train under rainfall, the variation in the safety factor of railway embankment is predicted as the function of rainfall intensity, duration time and the train load as a function of train speed. It is possible to ensure the safety of train under rainfall. Thereafter, the feasibility of the rail-transport operation control with engineering basis was established.

  • PDF

Stress Corrosion Cracking in the Pre-Cracked Specimens of Type 403 Stainless Steel

  • Kim, Jong Jip
    • Corrosion Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.14-19
    • /
    • 2004
  • Crack growth rate and threshold stress intensity factor for stress corrosion cracking(SCC), $K_{ISCC}$ were measured for type 403 stainless steel in 3,5% NaCl solution at room temperature and SCC was monitored by electrochemical noise technique during $K_{ISCC}$ testing. In rising load test, pits were formed at the tip of pre-crack for the pre-cracked compact tension specimen unlike in smooth round specimen in which only unstable pits were observed and hence immune to SCC. Micro-cracks were found to initiate from the pits in the former specimen, and initiation of micro-crack as well as macro-crack was detected by electrochemical noise technique in rising load $K_{ISCC}$ tests. Crack growth rate increased with increasing either displacement rate or stress intensity factor at crack initiation and was higher in rising load $K_{ISCC}$ test compared to constant load $K_{ISCC}$ test at given stress intensities.

On the Application FH/SS Using Double Indirect Frequency Synthesizer (이중 간접 주파수 합성기를 이용한 FH/SS 적용에 관한 연구)

  • 정명덕;박재홍;김영민
    • Journal of the Korea Society of Computer and Information
    • /
    • v.4 no.1
    • /
    • pp.76-84
    • /
    • 1999
  • For FH/SS communication, We discussed the method of indirect frequency synthesizer in several methods. The problem of sing1e frequency synthesizer using with PLL is a varied coefficient value of damping factor in frequency hopping time, which is caused unstable frequency. So. for stable frequency synthesizer, a coefficient of damping factor must be optimized and synthesized to be removed excessive response time. In this paper, we studied FH using with double loop frequency synthesizer which takes stable frequency. We made up a simulator and had a good performance(real time speed).

  • PDF