• 제목/요약/키워드: unsaturated modeling

검색결과 56건 처리시간 0.026초

THE PHYSICALLY-BASED SOIL MOISTURE BALANCE MODEL DEVELOPMENT AND APPLICATIONS ON PADDY FIELDS

  • Park, Jae-Young;Lee, Jae-Hyoung
    • Water Engineering Research
    • /
    • 제1권3호
    • /
    • pp.243-256
    • /
    • 2000
  • This physically-based hydrologic model is developed to calculate the soil-moisture balance on paddy fields. This model consists of three modules; the first is the unsaturated module, the second is the rice evapotranspiration module with SPAC(soil-plant-atmospheric-continuum), and the third is the groundwater and open channel flows based upon the interrehtionship module. The model simulates the hydrlogical processes of infiltration, soil water storage, deep perocolation or echarge to the shallow water table, transpiration and evaporation from the soil surface and also the interrelationship of the groundwater and river flow exchange. To verify the applicability of the developed model, it was applied to the Kimjae Plains, located in the center of the Dongjin river basin in Korea, during the most serious drought season of 1994. The result shows that the estimated water net requirement was 757mm and the water deficit was about 5.9% in this area in 1994. This model can easily evaluate the irrigated water quantity and visualize the common crop demands and soil moisture conditions.

  • PDF

포화층및 불포화층에 대한 토양수분흐름의 모델링 (Modeling saturated-unsaturated moisture flow in soils)

  • 정상옥
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 1988년도 제30회 수공학연구발표회논문초록집
    • /
    • pp.85-92
    • /
    • 1988
  • A model for the transient one-dimensional moisture movement in the saturated-unsaturated zone using a finite difference method is developed. Hysteresis in the soil water retention is incorporated. The model considers layered geologic formations. Monte Carlo simulation, together with the nearest neighbor model is used. Outputs of the model include pressure head, water content, and the water table elevation. Two Monte Carlo simulations of 100 realizations each are made for a 12-day simulation period with different input values. The simulation results show that the S.D. of the outputs increases with an increase in the input, the S.D. of the log K$$. The model is applied to predict a long term water table fluctuation, and the predicted water table agress well with the observed one.

  • PDF

토양/대수층 처리(soil aquifer treatment)에서 유기물과 질소화합물 제거와 이송 모델링-(I) 모델 개발 및 검증 (Modeling Fate and Transport of Organic and Nitrogen Species in Soil Aquifer Treatment-(I) Model Development and Verification)

  • 김정우;김정곤;차우석;최희철
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제10권3호
    • /
    • pp.9-15
    • /
    • 2005
  • 토양/대수층 처리(Soil Aquifer Treatment, SAT)는 하수처리장으로부터의 2차 또는 3차 처리수를 대수층으로 침투시켜, 토양 매질에서 일어나는 물리적/생화학적 반응에 의해 재처리하는 용수 재이용 기술이다. SAT에서의 주요 관심 대상은 유기물과 질소화합물의 제거와 이송에 있다. 본 연구에서는 암모늄의 질산화 반응, 질소산회물의 탈질 반응, 그리고 유기물의 산화반응을 고려하여 SAT에서 일어나는 반응 메커니즘을 규명하고 이를 지하수 흐름과 이송 모렐 에 접목시킴으로써 SAT 모델링 시스템을 구현하고자 하였다. 실험실 일차원 불포화 토양 컬럼 실험을 통한 모델 검증에서 암모늄, 질산성 질소, DOC, 용존산소 모두 일정한 농도 범위 안에서 일치하였다. 모델 변수에 대한 민감도 분석에서, 암모늄 분배계수는 유출부의 암모늄 농도에, 용존산소 저해상수는 유출부의 유기물 농도에, 그리고 미생물 감쇄계수는 유출부의 용존산소 농도에 영향을 주었다.

3상 거동 상대투수율 선정에 따른 불포화대 및 포화대 내 NAPL 거동 특성 연구 (NAPL Fate and Transport in the Saturated and Unsaturated Zones Dependent on Three-phase Relative Permeability Model)

  • 김태훈;한원식;전현정;양우종;윤원우
    • 한국지하수토양환경학회지:지하수토양환경
    • /
    • 제27권spc호
    • /
    • pp.75-91
    • /
    • 2022
  • Differences in subsurface migration of LNAPL/DNAPL contaminants caused by a selection of 3-phase (aqueous, NAPL, and gas) relative permeability function (RPF) models in numerical modeling were investigated. Several types of RPF models developed from both experimental and theoretical backgrounds were introduced prior to conducting numerical modeling. Among the RPF models, two representative models (Stone I and Parker model) were employed to simulate subsurface LNAPLs/DNAPLs migration through numerical calculation. For each model, the spatiotemporal distribution of individual phases and the mole fractions of 6 NAPL components (4 LNAPL and 2 DNAPL components) were calculated through a multi-phase and multi-component numerical simulator. The simulation results indicated that both spilled LNAPLs and DNAPLs in the unsaturated zone migrated faster and reached the groundwater table sooner for Stone I model than Parker model while LNAPLs migrated faster on the groundwater table under Parker model. This results signified the crucial effect of 3-phase relative permeability on the prediction of NAPL contamination and suggested that RPF models should be carefully selected based on adequate verification processes for proper implementation of numerical models.

Effect of water content on near-pile silt deformation during pile driving using PIV technology

  • Jiang, Tong;Wang, Lijin;Zhang, Junran;Jia, Hang;Pan, Jishun
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.139-149
    • /
    • 2020
  • Piles are widely used in structural foundations of engineering projects. However, the deformation of the soil around the pile caused by driving process has an adverse effect on adjacent existing underground buildings. Many previous studies have addressed related problems in sand and saturated clay. Nevertheless, the failure mechanism of pile driving in unsaturated soil remains scarcely reported, and this issue needs to be studied. In this study, a modeling test system based on particle image velocimetry (PIV) was developed for studying deformation characteristics of pile driving in unsaturated silt with different water contents. Meanwhile, a series of direct shear tests and soil-water characteristic curve (SWCC) tests also were conducted. The test results show that the displacement field shows an apparent squeezing effect under the pile end. The installation pressure and displacement field characteristics are sensitive to the water content. The installation pressure is the largest and the total displacement field is the smallest, for specimens compacted at water content of 11.5%. These observations can be reasonably interpreted according to the relevant unsaturated silt theory derived from SWCC tests and direct shear tests. The variation characteristics of the soil displacement field reflect the macroscopic mechanical properties of the soil around the pile.

평균 모세관압과 네트워크 모델을 이용한 불포화토의 유효 열전도도 산정에 관한 연구 (Study on Evaluation of Effective Thermal Conductivity of Unsaturated Soil Using Average Capillary Pressure and Network Model)

  • 한은선;이철호;최현준;최항석
    • 한국지반공학회논문집
    • /
    • 제29권1호
    • /
    • pp.93-107
    • /
    • 2013
  • 입상체의 열전도도 산정에 관한 연구는 다공질 매질이나 지반공학에서 다양하게 사용될 수 있다. 입상체의 열전도도 산정은 입자들 사이의 에너지 관계에 대한 모사를 통해 "유효 열전도도"를 획득하는 것으로 발전하였다. 본 연구는 불포화토의 유효 열전도도를 산정하기 위해 3차원 개별 요소법을 이용하여 입자를 생성하고 기존 네트워크 모델을 수정하여 적용하였다. 수정된 네트워크 모델을 검증하기 위해 3가지 다른 크기의 글라스 비즈와 주문진사를 이용하여 실내시험을 통해 흙-수분 특성 곡선과 포화도에 따른 시료의 열전도도를 산정하였다. 수정된 네트워크 모델에서는 흙-수분 특성 곡선을 사용하여 입자 사이의 평균 유효 열전달 실린더 반경을 조정하고 모델에 적용하였다. 일련의 실내시험과 수정된 네트워크 모델을 사용하여 결과를 비교한 결과, 흙-수분 특성 곡선을 적용한 네트워크 모델은 주어진 불포화 조건에서 입상체 시료의 유효 열전도도를 합리적으로 모사할 수 있는 것으로 나타났다. 또한, 포화상태의 유효 열전달 실린더 반경 계수로 정규화한 예측식을 제안하였다. 제안한 예측식을 통해 기존 네트워크 모델을 사용하여 불포화 상태에서 입상체의 유효 열전도도를 산정할 수 있다.

Micromechanical investigation for the probabilistic behavior of unsaturated concrete

  • Chen, Qing;Zhu, Zhiyuan;Liu, Fang;Li, Haoxin;Jiang, Zhengwu
    • Computers and Concrete
    • /
    • 제26권2호
    • /
    • pp.127-136
    • /
    • 2020
  • There is an inherent randomness for concrete microstructure even with the same manufacturing process. Meanwhile, the concrete material under the aqueous environment is usually not fully saturated by water. This study aimed to develop a stochastic micromechanical framework to investigate the probabilistic behavior of the unsaturated concrete from microscale level. The material is represented as a multiphase composite composed of the water, the pores and the intrinsic concrete (made up by the mortar, the coarse aggregates and their interfaces). The differential scheme based two-level micromechanical homogenization scheme is presented to quantitatively predict the concrete's effective properties. By modeling the volume fractions and properties of the constituents as stochastic, we extend the deterministic framework to stochastic to incorporate the material's inherent randomness. Monte Carlo simulations are adopted to reach the different order moments of the effective properties. A distribution-free method is employed to get the unbiased probability density function based on the maximum entropy principle. Numerical examples including limited experimental validations, comparisons with existing micromechanical models, commonly used probability density functions and the direct Monte Carlo simulations indicate that the proposed models provide an accurate and computationally efficient framework in characterizing the material's effective properties. Finally, the effects of the saturation degrees and the pore shapes on the concrete macroscopic probabilistic behaviors are investigated based on our proposed stochastic micromechanical framework.

HYSTERETIC MODELING ON THE CONVECTIVE TRANSPORT OF ORGANIC SOLVENT IN AN UNSATURATED SOIL ZONE

  • Lee, Kun-Sang
    • Environmental Engineering Research
    • /
    • 제11권5호
    • /
    • pp.241-249
    • /
    • 2006
  • A mathematical model is described for the prediction of convective upward transport of an organic solvent driven by evaporation at the surface, which is known as the major transport mechanism in the in-situ photolysis of a soil contaminated with 2,3,7,8-tetrachlorodibenzo-p-dioxin(TCDD). A finite-element model was proposed to incorporate the effects of multiphase flow on the distribution of each fluid, gravity as a driving force, and the use of hysteretic models for more accurate description of k-S-p relations. Extensive numerical calculations were performed to study fluid flow through three types of soils under different water table conditions. Predictions of relative permeability-saturation-pressure (k-S-p) relations and fluids distribution for an illustrative soil indicate that hysteresis effects may be quite substantial. This result emphasizes the need to use hysteretic models in performing flow simulations including reversals of flow paths. Results of additional calculations accounting for hysteresis on the one-dimensional unsaturated soil columns show that gravity affects significantly on the flow of each fluid during gravity drainage, solvent injection, and evaporation, especially for highly permeable soils. The rate and duration of solvent injection also have a profound influence on the fluid saturation profile and the amount of evaporated solvent. Key factors influencing water drainage and solvent evaporation in soils also include hydraulic conductivity and water table configuration.

이차원 복합적 습기와 열흐름의 분석모델과 민감도 분석 (Two-dimensional Coupled Moisture and Heat Flow Model and Sensitivity Analysis)

  • Kim, Suk-Nam
    • 한국지반공학회논문집
    • /
    • 제19권5호
    • /
    • pp.99-107
    • /
    • 2003
  • 포장 시스템 내에서의 습기흐름과 열흐름은 상호간에 복합적인 작용을 하는 과정들로 인식되어 왔다. 습기의 흐름과 열흐름에 기인한 포장내에서의 습기와 온도의 분포는 계절적으로 변화할 뿐만 아니라 수직 그리고 수평적으로도 변화한다. 이 논문은 불포화토에서의 이차원 복합적인 습기와 열흐름에 대해서 유한요소법을 사용한 분석모델을 제시한다. 모델을 검증하기 위해 모델에 의한 분석결과는 Canada Alberta에 소재한 GEO-SLOPE사에 의해 개발된 소프트웨어인 GEO-SLOPE에 의해 분석된 결과와 비교하였다. 그리고 모델에서 사용된 입력데이터가 모델분석에 미치는 영향을 알아보기 위해 ASTM 방법에 의한 민감도 분석을 수행하였다.

Fractal Scaling of Permeability in Unsaturated Fractured Tuff: Wavelet-Based Approach

  • Hyun, Yunjung
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2003년도 추계학술발표회
    • /
    • pp.140-143
    • /
    • 2003
  • Air permeabilities in unsaturated fractured tuff at the Apache Leap Research Site (ALRS) near Superior, Arizona, exhibit a self-affine behavior, thus renders a field random fractal. Based up fractal scaling, the observed scale effect has been interpreted [Hyun et al., 2002]. Recently, Frantziskonis and Hansen [2000] presented that fractal scaling can be represented based on wavelets. This study deals with the way of using wavelets for fractal scaling. A numerical study is presented to examine the applicability of wavelet-based approach to determining upscaled air permeability values on various data supports at the site. To characterize the scaling property of self-affine fields generated based upon wavelets, Hurst coefficient, H. was inferred by applying the average wavelet coefficient (AWC) method. The result yielded H = 0.24, which is very close to the result of geostatistical analysis using a power variogram (H = 0.22). The study concludes that wavelet-based scaling is a useful way of determining parameter values on different data supports, which is an essential task for modeling of subsurface flow and mass transport in a numeric grid with different resolutions (grid size).

  • PDF