• Title/Summary/Keyword: unsaturated fatty acids

Search Result 807, Processing Time 0.024 seconds

Effects of Chromium Methionine Supplementation on Blood Metabolites and Fatty Acid Profile of Beef during Late Fattening Period in Holstein Steers

  • Nejad, Jalil Ghassemi;Lee, Bae-Hun;Kim, Byong-Wan;Ohh, Sang-Jip;Sung, Kyung Il
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.3
    • /
    • pp.378-383
    • /
    • 2016
  • The objective of this study was to determine the effects of chromium methionine (Cr-Met) chelate supplementation on blood metabolites and fatty acid profile of beef from Holstein steers during late fattening period. Fifteen Holstein steers were allotted randomly into two groups including the control (non Cr-Met feeding, NCM, ave. body weight [BW] = $483{\pm}25.7kg$) and the treatment (Cr-Met feeding for 4 months, 4CM, ave. $BW=486{\pm}27.5kg$) group. The feeding amount of Cr-Met to animals was limited to 400 ppb/cow/d and was supplemented to total mixed ration. No difference in blood albumin, alkaline phosphatase, urea-nitrogen, calcium, creatine, glucose, total protein, triglyceride, and cholesterol were observed between the treatment groups (p>0.05). The level of high density lipoprotein was higher in the 4CM group than the NCM group, whereas low density lipoprotein was lower in the 4CM group (p<0.05). The fatty acid composition (caprate, laurate, myristate, pentadecanoate, palmitate, palmitoleate, margarate, cis-11 heptadodecanoate, stearate, oleate, trans-vaccenate, linoleate, cis-11 eicosenoate, docosa hexaenoic acid, and docosa pentaenoic acid) of the beef showed no difference between the two groups (p>0.05). The arachidonic acid level tended to be higher in the 4CM than the NCM group (p = 0.07). Cr-Met had no influence (p>0.05) on the ratio of saturated, unsaturated, unsaturated/saturated, monounsaturated/saturated and polyunsaturated/saturated fatty acids whereas the ratio of polyunsaturated fatty acids (PUFA) in the 4CM group was comparatively higher than the NCM group (p<0.05). This study concluded that feeding Cr-Met supplementation in 400 ppb/d to Holstein steers for 4 months during late fattening period can improve some blood metabolites and beef quality by increasing PUFA and gamma-linoleate compositions of beef.

Supplementation with Selenium and Vitamin E Improves Milk Fat Depression and Fatty Acid Composition in Dairy Cows Fed Fat Diet

  • Liu, Zhao L.;Yang, De P.;Chen, Pu;Dong, Wei X.;Wang, Dong M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.6
    • /
    • pp.838-844
    • /
    • 2008
  • This experiment was conducted to evaluate the effect of supplementing a fat diet with selenium (Se) and vitamin E on performance of cows, blood antioxidant status and milk fatty acid composition. Sixty-three lactating Holstein cows were randomly divided into seven groups of nine cows each and each group was fed one of the following diets: i) a basal diet (control); ii) a basal diet with 0.15 mg Se/kg DM (LSe); iii) a basal diet with 0.3 mg Se/kg DM (HSe); iv) a basal diet with 5,000 IU/cow d vitamin E (LVE); v) a basal diet with 10,000 IU/cow d vitamin E (HVE); vi) a basal diet with 0.15 mg Se/kg DM and 5,000 IU/cow d vitamin E (LSeVE); vii) a basal diet with 0.3 mg Se/kg DM and 10,000 IU/cow d vitamin E (HSeVE). Milk fat percentage and conjugated linoleic acid (CLA) yield in HVE and HSeVE diets increased (p<0.05) compared with the control diet. In milk fat, dietary supplementation of Se tended to increase the proportion of the sum of unsaturated fatty acids (UFA) and significantly decreased (p<0.05) the proportion of the sum of saturated fatty acids (SFA). In addition, compared with the control, thiobarbituric acid reactive substances (TBARS) content was lower and glutathione peroxidase (GSH-Px) was higher when fat diets were supplemented with Se. Our data showed that supplementation with Se and/or VE improved these nutrients in blood and milk. The results indicated that fat diets supplemented with Se improved both antioxidant status in blood and fatty acids in milk fat, and fat diets supplemented with vitamin E alleviated milk fat depression. Therefore, the combination of Se and vitamin E caused synergistic effects on the nutritional quality of milk fat and performance of cows fed a fat diet.

Ginseng seed oil ameliorates hepatic lipid accumulation in vitro and in vivo

  • Kim, Go Woon;Jo, Hee Kyung;Chung, Sung Hyun
    • Journal of Ginseng Research
    • /
    • v.42 no.4
    • /
    • pp.419-428
    • /
    • 2018
  • Background: Despite the large number of studies on ginseng, pharmacological activities of ginseng seed oil (GSO) have not been established. GSO is rich in unsaturated fatty acids, mostly oleic and linoleic acids. Unsaturated fatty acids are known to exert a therapeutic effect in nonalcoholic fatty liver disease (NAFLD). In this study, we investigated the protective effect and underlying mechanisms of GSO against NAFLD using in vitro and in vivo models. Methods: In vitro lipid accumulation was induced by free fatty acid mixture in HepG2 cells and by 3 wk of high fat diet (HFD)-feeding in Sprague-Dawley rats prior to hepatocyte isolation. The effects of GSO against diet-induced hepatic steatosis were further examined in C57BL/6J mice fed a HFD for 12 wk. Results: Oil Red O staining and intracellular triglyceride levels showed marked accumulation of lipid droplets in both HepG2 cells and rat hepatocytes, and these were attenuated by GSO treatment. In HFD-fed mice, GSO improved HFD-induced dyslipidemia and hepatic insulin resistance. Increased hepatic lipid contents were observed in HFD-fed mice and it was lowered in GSO (500 mg/kg)-treated mice by 26.4% which was evident in histological analysis. Pathway analysis of hepatic global gene expression indicated that GSO increased the expression of genes associated with ${\beta}$-oxidation (Ppara, Ppargc1a, Sirt1, and Cpt1a) and decreased the expression of lipogenic genes (Srebf1 and Mlxipl), and these were confirmed with reverse transcription and quantitative polymerase-chain reaction. Conclusion: These findings suggest that GSO has a beneficial effect on NAFLD through the suppression of lipogenesis and stimulation of fatty acid degradation pathway.

Effect of Flask Type on the Production of Value-added Hydroxy Fatty Acid by Pseudomonas aeruginosa PR3 (Pseudomonas aeruginosa PR3에 의한 기능성지방산 Hydroxy fatty acid 생산에 있어 배양용기 형태에 따른 영향)

  • Baek, Ka-Yeon;Son, Hye-Ran;Kim, Hak-Ryul
    • Journal of the Korean Applied Science and Technology
    • /
    • v.27 no.2
    • /
    • pp.114-122
    • /
    • 2010
  • Hydroxy fatty acids have gained important attentions because of their special properties such as higher viscosity and reactivity compared to non-hydroxy fatty acids. The new bacterial isolate Pseudomonas aeruginosa (PR3) had been well studied to produce mono-, di-, and tri-hydroxy fatty acids from different unsaturated fatty acids. Of those hydroxy fatty acids, 7,10-dihydroxy-8(E)-octadecenoic acid (DOD) was produced with high yield from oleic acid by P. aeruginosa PR3. Mostly, the substrates used for the production of hydroxy fatty acid by microorganisms were free fatty acids or synthetic lipids. However, it is highly plausible to use vegetable oils containing oleic acid such as olive oil for DOD production by P. aeruginosa PR3. As a first step to address the utilization of olive oil as a substrate for DOD production, we tried to determine the effect of vessel type on DOD production from olive oil by P. aeruginosa PR3. Of two different flask types of normal flask and baffled-flask, baffled-flask was highly effective for DOD production with all the media tested. Maximum increase of productivity by baffled-flask represented 221% with the medium supplemented with whey powder instead of lactose. Results from this study demonstrated that vessel type and medium composition could be both significant factors for DOD production from olive oil by P. aeruginosa PR3.

Effects of Dietary Conjugated Linoleic Acid Levels and Periods on Meat Quality in Breast and Thigh Muscles of Broiler (Conjugated Linoleic Acid 급여기간과 첨가수준이 저장기간 중 육계의 부위별 품질특성에 미치는 영향)

  • 문성실;신철우;주선태;박구부
    • Journal of Animal Science and Technology
    • /
    • v.48 no.1
    • /
    • pp.107-114
    • /
    • 2006
  • A total of 180 Arbor Acre broilers (35 days of age) were fed a diet containing 0%, 0.6%, 1.2%, 1.8%, 2.4% or 4.8% conjugated linoleic acid (CLA) for 3 weeks then slaughtered at week 1, 2 and 3. Thigh and breast muscles were seamed out, vaccum-packed prior to storage in a chill for days 7 to analyse thiobarbituric acid reactive substances (TBARS). The accumulation of CLA in breast and thigh muscles was increased significantly (P<0.05) as the CLA level was increased, but no significant difference amongst the treatments. The contents of saturated fatty acids were significantly increased(P<0.05) with an increase of dietary CLA level, but those of unsaturated fatty acids were significantly decreased (P<0.05). The content of mono unsaturated fatty acid (MUFA) was decreased as dietary CLA level increased, even though that of poly unsaturated fatty acid (PUFA) had a little difference between dietary CLA level. Dietary CLA reduced the degree of lipid oxidation in raw chicken meat during storage.

The Effects of Surfactants on the Biosynthesis of Galactolipid and the Composition of Fatty Acids in Chloroplast Envelope rind Thylakoid Membrane of Chlorella ellipsoidea

  • Choe, Eun-A;Cheong, Gyeong-Suk;Lee, Cheong-Sam
    • Animal cells and systems
    • /
    • v.2 no.3
    • /
    • pp.341-349
    • /
    • 1998
  • To analyze the effects of surfactants on the biosynthesis of galactolipid and the composition of fatty acids, the chloroplast envelope and thylakoid membrane were cultivated in medium treated with anionic surfactants, such as linear alkylbenzene sulfonate (0.002%, LAS), a-olefin sulfonate (O.01%, AOS), and sodium lauryl ether sulfate (0.08%, SLES), respectively. During the cultivation, the chloroplast envelope and thylakoid membrane were isolated from the cells collected at the early and middle phase of the culture and the contents of their fatty acid composition were compared with the control. When treated with surfactants, the contents of total lipid MDGD methylesters, and DGDG methylesters decreased significantly when compared with the control. It was also confirmed that more unsaturated fatty acids were involved in the biosynthesis of galactolipid. The fatty acids utilized in the biosynthesis of MGDG were in the chloroplast envelope and in the control, and linoleic acid in LAS, linolenic acid and oleic acid in AOS, and linolenic acid and oleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control linolenic acid and stearic acid in LAS, oleic acid and linolenic acid in AOS, oleic acid and linolenic acid in SLES. In the thylakoid membrane, the major fatty acids in the biosynthesis of MGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, linolenic acid and palmitoleic acid in SLES. The fatty acids in the biosynthesis of DGDG were linolenic acid and oleic acid in the control, oleic acid and linolenic acid in LAS, linolenic acid and linoleic acid in AOS, palmitoleic acid and oleic acid in SLES.

  • PDF

Nutritional Evaluation of Korean Yam (Dioscorea batatas DECNE.)

  • Duan, Yishan;Kim, Gyeong-Hwuii;Joung, Su-Jin;Kim, Han-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.2
    • /
    • pp.391-400
    • /
    • 2016
  • The aim of this study was conducted to investigate the proximate and nutritional compositions including mineral, vitamin, amino acids and fatty acids in Korean yam (Dioscorea batatas $D_{ECNE}.$). Carbohydrate (68.1%) possessed the large single constituent of yam. Small amounts of crude protein (16.9%), crude ash (5.8%) and crude fat (2.0%) contents were found. Yam was found to be good sources of essential minerals such as K (1295.5 mg/100 g), Mg (115.3 mg/100 g), Na (99.0 mg/100 g) and Ca (56.5 mg/100 g) but Zn (0.3 mg/100 g) content was low. Relatively abundant vitamin $B_1$ (11.5 mg/100g) could be observed while vitamin A, $B_3$ and $B_6$ were not found. The amino acid analysis revealed that the yam was superior with respect to glutamic acid (1770.6 mg%), lysine (1210.6 mg%) and urea (550.9 mg%). Essential amino acids were calculated to be 2954.5 mg%. The amino acid profiles showed that yam to be limiting in valine and leusine. Palmitic acid and linoleic acid were the most predominant fatty acids with the value of 31.5% and 41.5%, respectively. And the polyunsaturated fatty acids including linoleic acid and linolenic acid were present in a large quantities in yam. And it also contained higher amounts of unsaturated fatty acids compared saturated fatty acids.

Hazardous Effect of Dietary Trans Fats on Human Health and Regulations (인체에 미치는 트랜스지방의 위해와 규제현황)

  • Gil, Bog-Im;Rho, Jeong-Hae
    • Korean journal of food and cookery science
    • /
    • v.23 no.6
    • /
    • pp.1015-1024
    • /
    • 2007
  • Trans-fatty acids (TFAs) are defined as the sum of all unsaturated fatty acids that contain one or more non-conjugated double bonds in a trans configuration. Dietary trans- fatty acids originate from commercially hydrogenated oils and from dairy and meat fats. From the perspective of the food industry, partially hydrogenated vegetable oils are attractive because of their long shelf life, stability during deep-frying, and semisolidity, which can be customized to enhance the palatability of baked goods and fried foods. Although no definite differences have been documented so far between the metabolic and health effects of industrial and ruminant TFAs, the intake of industrially produced TFA has declined, and in Europe, the majority of TFAs are of ruminant origin. Due to the scientific evidence associating TFA intake with increased risk of coronary heart disease (CDH), the Korea Food and Drug Administration (KFDA) issued a final rule that requires the amount of trans fat present in foods to be declared on the nutrition label, by December 1, 2007. In addition, many food manufacturers who use partially hydrogenated oils in their products have developed, or are considering ways, to reduce or eliminate trans-fatty acids from certain food products.

Studies on Proximate Composition, Fatty Acids and Volatile Compounds of Zanthoxylum schinifolium Fruit According to Harvesting Time (산초열매의 채집 시기별 일반성분, 지방산 및 정유성분 조성 변화)

  • Bae, Sung-Mun;Jin, Young-Min;Jeong, Eun-Ho;Kim, Man-Bae;Shin, Hyun-Yul;Ro, Chi-Woong;Lee, Seung-Cheol
    • Korean Journal of Medicinal Crop Science
    • /
    • v.19 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • Biological characteristics of 5 Zanthoxylum schinifolium (Zs) fruits such as Z1 (early August), Z2 (middle August), Z3 (middle September), Z4 (early October) and Z5 (middle October) according to harvesting time were evaluated. As fruits ripened, average weight of Zs increased from 4.8mg (Z1) to 50.7mg (Z5), while moisture contents decreased from 74.6% (Z1) to 55.2% (Z5). Crude fat contents of the fruits during ripening increased from 1% (Z1) to 10.6% (Z5). The major fatty acids in Zs were palmitic (C16:0), palmitoleic (C16:1), oleic (C18:1), and linoleic (C18:2) acids. Linoleic acid (C18:2) was a main fatty acid in Z1 and Z2, whereas oleic acid (C18:1) was found as a main one in the other Zs. The ratio of unsaturated fatty acid to total fatty acids increased from 60% (Z1) to 80% (Z3~Z5) during ripening. Among ripening stages, Z4 had the highest contents of total fatty acids ($3,355{\mu}g/g$) and total unsaturated fatty acids ($2,753{\mu}g/g$). Forty six volatile compounds in Zs were also identified. The major volatile compounds were ${\alpha}-pinene$, ${\beta}-myrcene$, ${\beta}-ocimene$, 2-nonanone, estragole, 2-undecanone, and ${\beta}-caryophyllene$. Major volatile components of Z1 were ${\beta}-ocimene$ (20.8 peak area %) and ${\alpha}-pinene$ (9.7 peak area %). In Z2, estragole (30.1 peak area %) was a main volatile compound, but the contents of ${\alpha}-pinene$ (0.4 peak area %), ${\beta}-myrcene$ (0.3 peak area %), and ${\beta}-ocimene$ (0.6 peak area %) were lower than those in Z1. Especially, estragole used as perfumes and as a food additive for flavor was drastically increased to 91.2 (Z3) and 92% (Z4) as fruits ripened.