• Title/Summary/Keyword: unsaturated clay

Search Result 41, Processing Time 0.026 seconds

Soil water retention and hysteresis behaviors of different clayey soils at high suctions

  • Li, Ze;Gao, You;Yu, Haihao;Chen, Bo;Wang, Long
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.373-382
    • /
    • 2022
  • Unsaturated soil at high suctions is widespread. Many civil engineering projects are related to the hydro-mechanical behavior of unsaturated soils at high suctions, particularly in arid and semiarid areas. To investigate water retention behaviors of nine clayey soils (one is classified as fat clay and the others are classified as lean clay according to the unified soil classification system), the high suction (3.29-286.7 MPa) was imposed on the specimens at zero net stress by the vapor equilibrium technique. In this paper, the effect of void ratio on the water retention behavior at high suction was discussed in detail. Validation data showed that soil types, i.e., different mineralogical compositions, are critical in the soil water retention behavior at a high suction range. Second, the hysteresis behavior at a high suction range is mainly related to the clay content and the specific surface area. And the mechanism of water retention and hysteresis behavior at high suctions was discussed. Moreover, the maximum suction is not a unique value, and it is crucial to determine the maximum suction value accurately, especially for the shear strength prediction at high suctions. If the soil consists of hydrophilic minerals such as montmorillonite and illite, the maximum suction will be lower than 106 kPa. Finally, using the area of hysteresis to quantify the degree of hysteresis at a high suction range is proposed. There was a good correlation between the area of hydraulic hysteresis and the specific surface area.

A Numerical Analysis on Pneumatic Fracturing for in-situ Remediation (비포화대 오염정화 설계를 위한 공압파쇄 모사 해석)

  • Kwon, Mi-Seon;Park, Eun-Gyu;Lee, Cheol-Hyo;Kim, Yong-Seong;Kim, Nam-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.53-63
    • /
    • 2010
  • Pneumatic fracturing is an emerging tool to enhance the remediation efficiency of contaminated unsaturated zones by injecting high pressure air and inducing artificial fracture networks. Pneumatic fracturing is reported to be well suited for the cases where the contaminated unsaturated zone thickness is less than 5 m as many contaminated domestic sites in Korea. Nevertheless, there have been almost no studies carried out on the site-specific efficiency and the optimized design of pneumatic fracturing considering the unsaturated zone characteristics of Korea. In this study, we employ numerical simulations to compare the efficiency of pneumatic fracturing on the aspect of the site remediation and the porosity improvement at several hypothetic unsaturated zones composed of four typical soil types. According to the simulation results, it is found that the zone with fine grains soil such as clay and silt shows better efficiency than the zone composed of coarse grains in terms of air flow and porosity enhancements. The results imply that pneumatic fracturing may improve the efficiency of site reclamation by jointly or independently applied to the many contaminated sites in Korea.

A novel triaxial testing device for unsaturated soils with measurement of suction and volumetric strains

  • Qian-Feng Gao;Mohamad Jrad;Mahdia Hattab;Said Taibi;Jean M. Fleureau
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.109-122
    • /
    • 2024
  • Standard triaxial cells are commonly used to measure the mechanical behavior of saturated soils. However, this type of standard system is difficult to use for unsaturated soil specimens since it cannot measure the changes in the pore-air volume and pressure. This paper proposes to extend the measurement possibilities of the standard triaxial testing device in a simple way and to adapt it to partially saturated soils. The system is supplied by two hygrometers installed at each end of the cylindrical unsaturated specimen to measure local relative humidity, which allows the derivation of suction. The volumetric strain of the specimen is calculated by analyzing digital photos captured from the outside of the transparent cell wall. Specimens made of kaolin clay, having different hydraulic properties, were tested to verify the reliability of the measurements, and thus, the relevance of the proposed techniques to study the mechanical behavior of unsaturated soils.

Development of Constitutive Model for the Prediction of Behaviour of Unsaturated Granular Soil (불포화 사질토의 거동예측을 위한 구성식 개발)

  • 송창섭;장병욱
    • Geotechnical Engineering
    • /
    • v.11 no.3
    • /
    • pp.43-54
    • /
    • 1995
  • The aim of the work described in this paper is to develope a constitutive model for the prediction of an unsaturated soil and to confirm the application'of the model, which is composed of the elastic and plastic part in consideration of the matric suction and the net mean stress. From test results, volume changes and deviator stresses are analyzed at each state and their relationships are formulated. The application of the model to silty sands is confirmed by the comparison between test and predicted results. During drying -wetting and loading -unloading processes for isotropic states, the agreement between predicted and test results are satisfactory. Predicted deviator stresses are well agreed with test results in shearing process. Overall acceptable predictions are reproduced in high confining pressure. Usefulness of the model is confirmed for the unsaturated soil except volumetric strain, which is not well agreed with the test results due to deficiency of dilatancy of the model in low confining pressure. It is, therefore. recommended to study the behavior of dilatancy for an unsaturated soil.

  • PDF

A Study on the Volume Change in Unsaturated Clayey Soil (불포화 정성토의 체적변화에 대한 연구)

  • Chang, Pyoung-Wuck;Gil, Sang-Choon
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.40 no.5
    • /
    • pp.37-42
    • /
    • 1998
  • This study was performed to evaluate the characteristics of volume change is unsaturated clayed soil. The medium-plastic clay was selected and compacted by 50% of Proctor standard compaction energy at 6% higher moisture content than its OMC. A series of isotropic compression tests and triaxial shear tests were performed. The results of the study are summarized as follows. At each matric suction, when the matric suction was increased, the yield stress was increased and slope of volume change was decreased. The more net mean stress was, the less the quantity of volume change was. In shear test, the volumetric strain was much rapidly changed in large matric than in low matric suctions. But the effect of matric suction to volume change disappeared under high net mean stress. At lower deviator stress the more matric suction was, the higher volume change was. But As the matric suction was increasing, the behavior of the unsaturated clayey soil was similar to that of saturated clayey soil. Volume change in the unsaturated clayey soil can be represented as a unique plane in three-dimensional space, which is the axes of net mean stress, matric suction and void ratio.

  • PDF

Evaluation of Fly Ash as an Alternative to Clay Liner Material in Landfills (플라이애쉬의 차수 및 오염물 차단 능력 평가 연구)

  • Jeong, Mun-Gyeong;Hyeon, Jae-Hyeok;Kim, Seung-Hyeon
    • Geotechnical Engineering
    • /
    • v.14 no.5
    • /
    • pp.191-204
    • /
    • 1998
  • The feasibility of fly ash was evaluated as an alternative liner material to the conventional clay liner of landfills through modeling and laboratory experiments. In order to consider the effect of unsaturation on water flow through the liner, analyses were made to compare flow characteristics in saturated liner with that of unsaturated one. Contaminant migration characteristics in liners were investigated by batch experiment and modeling, in which phenol was employed as a model was solved by numerical techniques of finite difference method and predictor-corrector method to deal with high non-linearity. Sequential method was used to handle the system of differential equations. Results show that the alternative liner material is more capable of cutting off water flow in unsaturated condition and in preventing phenol from passing through it. It can be seen that, under the flow conditions considered in this study, the conventional saturation approach underestimates the amount of water passing through the liner and doers the cut-off capability against phenol significantly.

  • PDF

Introduction of Barcelona Basic Model for Analysis of the Thermo-Elasto-Plastic Behavior of Unsaturated Soils (불포화토의 열·탄소성 거동 분석을 위한 Barcelona Basic Model 소개)

  • Lee, Changsoo;Yoon, Seok;Lee, Jaewon;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.38-51
    • /
    • 2019
  • Barcelona Basic Model (BBM) can describe not only swelling owing to decrease in effective stress, but also wetting-induced swelling due to decrease in suction. And the BBM can also consider increase in cohesion and apparent preconsolidation stress with suction, and decrease in the apparent preconsolidation stress with temperature. Therefore, the BBM is widely used all over the world to predict and to analyze coupled thermo-hydro-mechanical behavior of bentonite which is considered as buffer materials at the engineered barrier system in the high-level radioactive waste disposal system. However, the BBM is not well known in Korea, so this paper introduce the BBM to Korean rock engineers and geotechnical engineers. In this study, Modified Cam Clay (MCC) model is introduced before all, because the BBM was first developed as an extension of the MCC model to unsaturated soil conditions. Then, the thermo-elasto-plastic version of the BBM is described in detail.

Constitutive Model for Unsaturated Soils Based on the Effective Stress (유효응력에 근거한 불포화토의 역학적 구성모델)

  • Shin, Ho-Sung
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.55-69
    • /
    • 2011
  • The importance of unsaturated state in various geo-engineering problems has led to the advance of mechanical constitutive model emulating behavior of unsaturated soils in response to thermo-hydro-mechanical loading. Elasto-plastic mechanical constitutive model for unsaturated soil is formulated based on Bishop's effective stress. Effective stress and temperature are main variables in constitutive equation, and incremental formulation of constitutive relationship is derived to compute stress update and stiffness tensor. Numerical simulations involving coupled THM processes are conducted to discuss numerical stability and applicability of developed constitutive model: one-dimensional test, tri-axial compression test, and clay-buffering at high level radioactive waste disposal. Numerical results demonstrated that developed model can predict very complex behavior of coupled THM phenomena and is applicable to geo-engineering problems under various environmental conditions, as well as interpret typical behavior of unsaturated soils.

Influencing factors on electrical conductivity of compacted kaolin clay

  • Lee, J.K.;Shang, J.Q.
    • Geomechanics and Engineering
    • /
    • v.3 no.2
    • /
    • pp.131-151
    • /
    • 2011
  • The electrical conductivity of a soil-water system is related to its engineering properties. By measuring the soil electrical conductivity, one may obtain quantitative, semi-quantitative, or qualitative information to estimate the in-situ soil behavior for site characterization. This paper presents the results of electrical conductivity measured on compacted kaolin clay samples using a circular two-electrode cell in conjunction with a specially designed compaction apparatus, which has the advantage of reducing errors due to sample handling and increasing measurement accuracy. The experimental results are analyzed to observe the effects of various parameters on soil electrical conductivity, i.e. porosity, unit weight, water content and pore water salinity. The performance of existing analytical models for predicting the electrical conductivity of saturated and unsaturated soils is evaluated by calculating empirical constants in these models. It is found that the Rhoades model gives the best fit for the kaolin clay investigated. Two general relationships between the formation factor and soil porosity are established based on the experimental data reported in the literature and measured from this study for saturated soils, which may provide insight for understanding electrical conduction characteristics of soils over a wide range of porosity.

Soil water characteristic curve and improvement in lime treated expansive soil

  • Al-Mahbashi, Ahmed M.;Elkady, Tamer Y.;Alrefeai, Talal O.
    • Geomechanics and Engineering
    • /
    • v.8 no.5
    • /
    • pp.687-706
    • /
    • 2015
  • Methods commonly used to evaluate the improvement of lime-treated expansive soil include swelling characteristics and unconfined compressive strength. In the field, lime-treated expansive soils are in compacted unsaturated state. Soil water characteristic curves (SWCCs) represent a key parameter to interpret and describe the behavior of unsaturated expansive soil. This paper investigates the use of SWCC as a technique to evaluate improvements acquired by expansive soil after lime treatment. Three different lime contents were considered 2%, 4% and 6% by dry weight of clay. Series of tests were performed to determine the SWCC for the different lime content under curing periods of 7 and 28 day. Correlations between key features of the soil water characteristic curves of lime treated expansive soils and basic engineering behavior such as swelling characteristics and unconfined compression strength were established. Test results revealed that initial slope ($S_1$), saturated water content ($w_{sat}$), and air entry value (AEV) play an important role in reflecting improvement in engineering behavior achieved by lime treatment.