• Title/Summary/Keyword: unmixed f-ideal

Search Result 1, Processing Time 0.014 seconds

ON THE (n, d)th f-IDEALS

  • GUO, JIN;WU, TONGSUO
    • Journal of the Korean Mathematical Society
    • /
    • v.52 no.4
    • /
    • pp.685-697
    • /
    • 2015
  • For a field K, a square-free monomial ideal I of K[$x_1$, . . ., $x_n$] is called an f-ideal, if both its facet complex and Stanley-Reisner complex have the same f-vector. Furthermore, for an f-ideal I, if all monomials in the minimal generating set G(I) have the same degree d, then I is called an $(n, d)^{th}$ f-ideal. In this paper, we prove the existence of $(n, d)^{th}$ f-ideal for $d{\geq}2$ and $n{\geq}d+2$, and we also give some algorithms to construct $(n, d)^{th}$ f-ideals.