• Title/Summary/Keyword: unmanned system

Search Result 1,722, Processing Time 0.023 seconds

Investigation of Measurement Feasibility of Large-size Wastes Based on Unmanned Aerial System (UAS 기반 대형 폐기물 발생량 측정 가능성 모색)

  • Son, Seung Woo;Yu, Jae Jin;Jeon, Hyung Jin;Lim, Seong Ha;Kang, Young Eun;Yoon, Jeong Ho
    • Korean Journal of Remote Sensing
    • /
    • v.33 no.5_3
    • /
    • pp.809-820
    • /
    • 2017
  • Efficient management of large-size wastes generated from disasters etc. is always in demand. Large-size wastes are closely connected to the environment, producing adverse effects on the air quality, water quality, living environment and so on. When large-size wastes are generated, we must be able to estimate the generated amount in order to transfer them to a temporary trans-shipment site, or to properly treat them. Currently, we estimate the amount of generated large-size wastes by using satellite images or unit measure for wastes; however, the accuracy of such estimations have been constantly questioned. Therefore, the present study was performed to establish three-dimensional spatial information based on UAS, to measure the amount of waste, and to evaluate the accuracy of the measurement. A measurement was made at a waste site by using UAS, and the X, Y, Z RMSE values of the three-dimensional spatial information were found to be 0.022 m, 0.023 m, and 0.14 m, all of which show relatively high accuracy. The amount of waste measured using these values was computed to be approximately $4,273,400m^3$. In addition, the amount of waste at the same site was measured by using Terrestrial LiDAR, which is used for the precise measurement of geographical features, cultural properties and the like. The resulting value was $4,274,188m^3$, which is not significantly different from the amount of waste computed by using UAS. Thus, the possibility of measuring the amount of waste using UAS was confirmed, and UAS-based measurement is believed to be useful for environmental control with respect to disaster wastes, large-size wastes, and the like.

Insurance system for legal settlement of drone accidents (드론사고의 법적 구제에 관한 보험제도)

  • Kim, Sun-Ihee;Kwon, Min-Hee
    • The Korean Journal of Air & Space Law and Policy
    • /
    • v.33 no.1
    • /
    • pp.227-260
    • /
    • 2018
  • Recently, as the use of drones increases, the risk of drone accidents and third-party property damage is also increasing. In Korea, due to the recent increase in drone use, accidents have been frequently reported in the media. The number of reports from citizens, and military and police calls regarding illegal or inappropriate drone use has also been increasing. Drone operators may be responsible for paying damages to third parties due to drone accidents, and are liable for paying settlements due to illegal video recording. Therefore, it is necessary to study the idea of providing drone insurance, which can mitigate the liability and risk caused by drone accidents. In the US, comprehensive housing insurance covers damages caused by recreational drones around the property. In the UK, when a drone accident occurs, the drone owner or operator bears strict liability. Also, in the UK, drone insurance joining obligation depends on the weight of the drones and their intended use. In Germany, in the event of personal or material damage, drone owner bears strict liability as long as their drone is registered as an aircraft. Germany also requires by law that all drone owners carry liability insurance. In Korea, insurance is required only for "ultra-light aircraft use businesses, airplane rental companies and leisure sports businesses," where the aircraft is "paid for according to the demand of others." Therefore, it can be difficult to file claims for third party damages caused by unmanned aerial vehicles in personal use. Foreign insurance companies are selling drone insurance that covers a variety of damages that can occur during drone accidents. Some insurance companies in Korea also have developed and sell drone insurance. However, the premiums are very high. In addition, drone insurance that addresses specific problems related to drone accidents is also lacking. In order for drone insurance to be viable, it is first necessary to reduce the insurance premiums or rates. In order to trim the excess cost of drone insurance premiums, drone flight data should be accessible to the insurance company, possibly provided by the drone pilot project. Finally, in order to facilitate claims by third parties, it is necessary to study how to establish specific policy language that addresses drone weight, location, and flight frequency.