• Title/Summary/Keyword: unloading performance

Search Result 133, Processing Time 0.028 seconds

Improving Hydraulic System Design by Analysis Model of a Self-propelled Spinach Harvester (자주식 시금치 수확장치 해석모델을 활용한 유압시스템 개선 설계 제안)

  • Noh, Dae Kyung;Lee, Dong Won;Lee, Jong Su;Jang, Joo Sup
    • Journal of Drive and Control
    • /
    • v.19 no.1
    • /
    • pp.69-75
    • /
    • 2022
  • This study aimed to develop solutions for the intermittent performance deterioration of self-propelled spinach harvesters through analysis model. The study was conducted in the following manner. First, changes in performance deterioration and surplus flow, which result from oil temperature changes, were analyzed by simulating actual sequential harvesting movements, which involve driving with actuators operated simultaneously, by analysis model developed in a previous study. Second, fundamental solutions for surplus flow problems were presented. Third, the solutions were applied to a virtual environment to present their practicality and quantitative effects. The two solutions based on the study results were as follows. First, a closed center-type directional control valve was applied to the hydraulic circuit. Second, an unloading system was set up through an on-off solenoid valve.

A new model approach to predict the unloading rock slope displacement behavior based on monitoring data

  • Jiang, Ting;Shen, Zhenzhong;Yang, Meng;Xu, Liqun;Gan, Lei;Cui, Xinbo
    • Structural Engineering and Mechanics
    • /
    • v.67 no.2
    • /
    • pp.105-113
    • /
    • 2018
  • To improve the prediction accuracy of the strong-unloading rock slope performance and obtain the range of variation in the slope displacement, a new displacement time-series prediction model is proposed, called the fuzzy information granulation (FIG)-genetic algorithm (GA)-back propagation neural network (BPNN) model. Initially, a displacement time series is selected as the training samples of the prediction model on the basis of an analysis of the causes of the change in the slope behavior. Then, FIG is executed to partition the series and obtain the characteristic parameters of every partition. Furthermore, the later characteristic parameters are predicted by inputting the earlier characteristic parameters into the GA-BPNN model, where a GA is used to optimize the initial weights and thresholds of the BPNN; in the process, the numbers of input layer nodes, hidden layer nodes, and output layer nodes are determined by a trial method. Finally, the prediction model is evaluated by comparing the measured and predicted values. The model is applied to predict the displacement time series of a strong-unloading rock slope in a hydropower station. The engineering case shows that the FIG-GA-BPNN model can obtain more accurate predicted results and has high engineering application value.

Study on Damping Characteristics of Hydropneumatic Suspension Unit of Tracked Vehicle

  • Cho, Jin-Rae;Lee, Hong-Woo;Yoo, Wan-Suk;Lee, Jin-Kyu
    • Journal of Mechanical Science and Technology
    • /
    • v.18 no.2
    • /
    • pp.262-271
    • /
    • 2004
  • Hydropneumatic suspension unit is an important part of tracked vehicles to absorb external impact load exerted from the non-paved road and the cannon discharge. Its absorption performance is strongly influenced by both damping and spring forces of the unit. In this paper, we numerically analyze the damping characteristics of the in-arm-type hydropneumatic suspension unit (ISU) by considering four distinct dynamic modes of the ISU damper: jounce-loading, jounce-unloading, rebound-loading and rebound-unloading. The flow rate coefficients determining the oil flow rate through the damper orifice are decided with the help of independent experiments. The wheel reaction force, the flow rate at cracking and the damping energy are parametrically investigated with respect to the orifice diameter and the wheel motion frequency.

A Study on Variation of State Matrix to Improve the Unloading Performance (언로딩 성능향상을 위한 서스펜션 상태행렬 변화에 대한 연구)

  • Lee, Young-Hyun;Kim, Ki-Hoon;Kim, Seok-Hwan;Lee, Yong-Eun;Park, Kyoung-Su;Park, No-Cheol;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.618-621
    • /
    • 2008
  • Most hard disk drives that apply the ramp load/unload technology unload the heads at the outer edge of the disk while the disk is rotating. During the unloading process, slider-disk contacts may occur by lift-off force and rebound of the slider. The main issue of this paper is to prevent the slider-disk contact by changing the state matrix. Because the state matrix is related to the suspension and slider, to change the state matrix means the structural change of the suspension and slider. We investigate influence for variation of the state matrix components and analyze the relation between the state matrix and the suspension/slider.

  • PDF

Design Procedure and Analysis of Ramp Profile in SFF HDD (초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.384-387
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

A Study on the development of intelligent coaxial grinding system (페룰 가공용 지능형 동축 연삭시스템 개발에 관한 연구)

  • Ah, K.J.;Lee, H.J.
    • Proceedings of the KSME Conference
    • /
    • 2004.04a
    • /
    • pp.1092-1098
    • /
    • 2004
  • Today the demand of the optical communication components has been increased. Zirconia Ferrule has become the one of the most important elements because it determines transmission efficiency and quality of information in the optical communication system. Grinding is the major process in the ferrule manufacturing process which require high processing precision. In this reseach, specially designed spindle, chucking system, loading & unloading system and cooling system, as a supporting experimental equipment for development of an Intelligent Coaxial Grinding System (ICGS) for Zirconia Ferrule processing, is developed. We are also analized the adaptability of ICGS in practical use, through the way of evaluation for the performance of the each systems above.

  • PDF

Design Procedure and Analysis of Ramp Profile in SFF HDD (초소형 하드디스크에서 램프 형상 분석 및 설계 프로세스 연구)

  • Lee, Yong-Hyun;Park, Kyoung-Su;Park, No-Cheol;Yang, Hyun-Seok;Park, Young-Pil
    • Transactions of the Society of Information Storage Systems
    • /
    • v.2 no.2
    • /
    • pp.150-155
    • /
    • 2006
  • Vertical L/UL (Load/Unload) velocity is very important parameter to determine the L/UL performance, and the vertical velocity is determined by the actuator velocity and the ramp profile. However, it is not easy to precisely control the actuator rotating velocity during the L/UL process. Especially in emergency parking, servo system doesn't operate, it is impossible to control an actuator velocity. Then, the vertical unloading velocity depends on only ramp profile. The ramp height and the sliding length for L/UL process in SFF (Small Form Factor) HDD are restricted due to slimness and small media. For these reasons, it is very difficult to design the ramp profile in SFF HDD. Therefore, this study analyzes the unloading dynamic characteristics for various ramp profiles and makes the thesis for ramp profile design.

  • PDF

An Automated System for Constant ${\Delta}K_{eff}$ Fatigue Crack Growth Testing through Real-time Measurement of Crack Opening Load (${\Delta}K_{eff}$ 제어 피로 균열 진전 시험 자동화 시스템에 관한 연구)

  • Shin, Sung-Chul;Song, Ji-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06a
    • /
    • pp.447-452
    • /
    • 2001
  • An automated system is developed to perform fatigue crack growth tests under constant effective stress intensity factor range ${\Delta}K_{eff}$. In the system, crack length and crack opening load are measured in real-time by using the unloading elastic compliance method. The system consists of two personal computers, an analogue electrical subtraction circuit, a stepping motor, a stepping motor driver, a PIO board, and the application software used to integrate the whole system. The performance of the developed system was tested and discussed performing constant ${\Delta}K_{eff}$ crack growth tests on a CT specimen of 7075-T6 aluminum alloy. The performance of the system is found to be strongly dependent on the accuracy of measurements of crack opening load. Besides constant ${\Delta}K_{eff}$ testing, the system is expected to be successfully applied for automation of various fatigue tests.

  • PDF

Evaluation of Running Safety for Depressed Center Flat Car of 3-axle Bogie (3-축 대차 곡형평판차량의 주행안전성 평가)

  • Ham, Young-Sam;Seo, Jung-Won;Kwon, Seok-Jin;Lee, Dong-Hyung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2011
  • For the safety of railway, it should be evaluated for the running safety by measuring the derailment coefficient. Although railway has run the fixed and maintained rail, some of railway is derailed. This report shows the results that performed the static load test, main line running test on the basis of the derailment theory and experience. It is executed main line test into more than 90km/h for estimating the curving performance and running safety of depressed center flat car of 3-axle bogie. As the test results, could confirm the curving performance and running safety of depressed center fiat car of 3-axle bogie from the results of the wheel unloading, lateral force, derailment coefficient etc. Derailment coefficient was less than 0.6, and lateral force allowance limit and wheel load reduction ratio were enough safe.

Integrated Optimal Design for Suspension to Improve Load/unload Performance (로드/언로드 성능향상을 위한 서스팬션의 구조최적화)

  • Kim Ki-Hoon;Son Suk-Ho;Park Kyoung-Su;Yoon Sang-Joon;Park No-Cheol;Yang Hyun-Seok;Choi Dong-Hoon;Park Young-pil
    • 정보저장시스템학회:학술대회논문집
    • /
    • 2005.10a
    • /
    • pp.204-209
    • /
    • 2005
  • Load/Unload(L/UL) technology includes the benefits, that is, increased areal density, reduced power consumption and improved shock resistance contrary to contact-start-stop(CSS). It has been widely used in portable hard disk drive and will become the key technology far developing the small form factor hard disk drive. The main object of L/UL is no slider-disk contact or no media damage. For realizing those, we must consider many design parameters in L/UL system. In this paper, we focus on lift-off force. The 'lift-off' force, defined as the minimum air bearing force, is another very important indicator of unloading performance. A large amplitude of lift-off force increases the ramp force, the unloading time, the slider oscillation and contact-possibility. To minimize 'lift-off' force we optimizes the slider and suspension using the integrated optimization frame, which automatically integrates the analysis with the optimization and effectively implements the repetitive works between them. In particular, this study is carried out the optimal design considering the process of modes tracking through the entire optimization processes. As a result, we yield the equation which can easily find a lift-off force and structural optimization for suspension.

  • PDF