• Title/Summary/Keyword: unknown source parameter

Search Result 6, Processing Time 0.02 seconds

NEW ALGORITHM FOR THE DETERMINATION OF AN UNKNOWN PARAMETER IN PARABOLIC EQUATIONS

  • Yue, Sufang;Cui, Minggen
    • The Pure and Applied Mathematics
    • /
    • v.15 no.1
    • /
    • pp.19-34
    • /
    • 2008
  • A new algorithm for the solution of an inverse problem of determining unknown source parameter in a parabolic equation in reproducing kernel space is considered. Numerical experiments are presented to demonstrate the accuracy and the efficiency of the proposed algorithm.

  • PDF

An Inverse Analysis of Two-Dimensional Heat Conduction Problem Using Regular and Modified Conjugate Gradient Method (표준공액구배법과 수정공액구배법을 이용한 2차원 열전도 문제의 역해석)

  • Choi, Eui-Rak;Kim, Woo-Seung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.12
    • /
    • pp.1715-1725
    • /
    • 1998
  • A two-dimensional transient inverse heat conduction problem involving the estimation of the unknown location, ($X^*$, $Y^*$), and timewise varying unknown strength, $G({\tau})$, of a line heat source embedded inside a rectangular bar with insulated boundaries has been solved simultaneously. The regular conjugate gradient method, RCGM and the modified conjugate gradient method, MCGM with adjoint equation, are used alternately to estimate the unknown strength $G({\tau})$ of the source term, while the parameter estimation approach is used to estimate the unknown location ($X^*$, $Y^*$) of the line heat source. The alternate use of the regular and the modified conjugate gradient methods alleviates the convergence difficulties encountered at the initial and final times (i.e ${\tau}=0$ and ${\tau}={\tau}_f$), hence stabilizes the computation and fastens the convergence of the solution. In order to examine the effectiveness of this approach under severe test conditions, the unknown strength $G({\tau})$ is chosen in the form of rectangular, triangular and sinusoidal functions.

Force limited vibration testing: an evaluation of the computation of C2 for real load and probabilistic source

  • Wijker, J.J.;de Boer, A.;Ellenbroek, M.H.M.
    • Advances in aircraft and spacecraft science
    • /
    • v.2 no.2
    • /
    • pp.217-232
    • /
    • 2015
  • To prevent over-testing of the test-item during random vibration testing Scharton proposed and discussed the force limited random vibration testing (FLVT) in a number of publications. Besides the random vibration specification, the total mass and the turn-over frequency of the load (test item), $C^2$ is a very important parameter for FLVT. A number of computational methods to estimate $C^2$ are described in the literature, i.e., the simple and the complex two degrees of freedom system, STDFS and CTDFS, respectively. The motivation of this work is to evaluate the method for the computation of a realistic value of $C^2$ to perform a representative random vibration test based on force limitation, when the adjacent structure (source) description is more or less unknown. Marchand discussed the formal description of getting $C^2$, using the maximum PSD of the acceleration and maximum PSD of the force, both at the interface between load and source. Stevens presented the coupled systems modal approach (CSMA), where simplified asparagus patch models (parallel-oscillator representation) of load and source are connected, consisting of modal effective masses and the spring stiffness's associated with the natural frequencies. When the random acceleration vibration specification is given the CSMA method is suitable to compute the value of the parameter $C^2$. When no mathematical model of the source can be made available, estimations of the value $C^2$ can be find in literature. In this paper a probabilistic mathematical representation of the unknown source is proposed, such that the asparagus patch model of the source can be approximated. The chosen probabilistic design parameters have a uniform distribution. The computation of the value $C^2$ can be done in conjunction with the CSMA method, knowing the apparent mass of the load and the random acceleration specification at the interface between load and source, respectively. Data of two cases available from literature have been analyzed and discussed to get more knowledge about the applicability of the probabilistic method.

A Study on the Improvement of Accuracy of Shape Measurement in the Shadow Moire Method (그림자식 모아레를 이용한 형상측정법의 정확도 개선에 관한 연구)

  • 박경근;박윤창;정경민
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1999.05a
    • /
    • pp.175-180
    • /
    • 1999
  • Generally, When we measure of object 3D surfaces with phase shifting shadow moire method, it is use of optical system consist of light source, grating, and ccd camera. At this time, it is important parameter that vertical distance of grating and camera, grating and light source, and horizontal distance of camera and light source. When use camera consist of complex lens vertical distance of grating and camera is unknown parameter. From this cause equivalent wave length of moire fringe is uncertain. In this study, We exactly obtain a vertical distance of grating and camera so improve on measurement accuracy.

  • PDF

Cavitation Compliance in 1D Part-load Vortex Models

  • Dorfler, Peter K
    • International Journal of Fluid Machinery and Systems
    • /
    • v.10 no.3
    • /
    • pp.197-208
    • /
    • 2017
  • When Francis turbines operate at partial load, residual swirl in the draft tube causes low-frequency pulsation of pressure and power output. Scale effects and system response may bias the prediction of prototype behavior based on laboratory tests, but could be overcome by means of a 1D analytical model. This paper deals with the two most important features of such a model, the compliance and the source of excitation. In a distributed-parameter version, compliance should be represented as an exponential function of local pressure. Lack of similarity due to different Froude number can thus be compensated. The normally unknown gas content in the vortex cavity has significant influence on the pulsation, and should therefore be measured and considered as a test parameter.

Development of near field Acoustic Target Strength equations for polygonal plates and applications to underwater vehicles (근접장에서 다각 평판에 대한 표적강도 이론식 개발 및 수중함의 근거리 표적강도 해석)

  • Cho, Byung-Gu;Hong, Suk-Yoon;Kwon, Hyun-Wung
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2007.05a
    • /
    • pp.1062-1073
    • /
    • 2007
  • Acoustic Target Strength (TS) is a major parameter of the active sonar equation, which indicates the ratio of the radiated intensity from the source to the re-radiated intensity by a target. In developing a TS equation, it is assumed that the radiated pressure is known and the re-radiated intensity is unknown. This research provides a TS equation for polygonal plates, which is applicable to near field acoustics. In this research, Helmholtz-Kirchhoff formula is used as the primary equation for solving the re-radiated pressure field; the primary equation contains a surface (double) integral representation. The double integral representation can be reduced to a closed form, which involves only a line (single) integral representation of the boundary of the surface area by applying Stoke's theorem. Use of such line integral representations can reduce the cost of numerical calculation. Also Kirchhoff approximation is used to solve the surface values such as pressure and particle velocity. Finally, a generalized definition of Sonar Cross Section (SCS) that is applicable to near field is suggested. The TS equation for polygonal plates in near field is developed using the three prescribed statements; the redection to line integral representation, Kirchhoff approximation and a generalized definition of SCS. The equation developed in this research is applicable to near field, and therefore, no approximations are allowed except the Kirchhoff approximation. However, examinations with various types of models for reliability show that the equation has good performance in its applications. To analyze a general shape of model, a submarine type model was selected and successfully analyzed.

  • PDF