• Title/Summary/Keyword: unknown excitation

Search Result 51, Processing Time 0.027 seconds

A Study on Adaptive Pattern Null Synthesis for Active Phased Array Antenna (능동위상배열안테나의 적응형 패턴 널 형성에 관한 연구)

  • Jung, Jin-Woo;Park, Sung-Il
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.16 no.3
    • /
    • pp.407-416
    • /
    • 2021
  • An active phased array antennas can not only electrically steer the beam by controlling the weighting of the excitation signal, but can also form a pattern null in the direction of the interference source. The weight of the excitation signal to steer the main beam can be easily calculated based on the position of the radiating element. In addition, the weight of the excited signal for pattern null formation can also be calculated by setting the required radiation pattern and using WLSM(Weighted Least Squares Method). However, in a general wireless communication network environment, the location of the interference source is unknown. Therefore, an adaptive pattern null synthesis is needed. In this paper, it was confirmed that pattern null synthesis according to the required radiation characteristic was possible. And based on this, adaptive pattern null synthesis into the direction of an interference source was studied using a binary search algorithm based on observation area. As a result of conducting a simulation based on the presented technique, it was confirmed that adaptive pattern null forming into the direction of an interference is possible in efficient way.

DOB-based piezoelectric vibration control for stiffened plate considering accelerometer measurement noise

  • Li, Shengquan;Zhao, Rong;Li, Juan;Mo, Yueping;Sun, Zhenyu
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.327-345
    • /
    • 2014
  • This paper presents a composite control strategy for the active suppression of vibration due to the unknown disturbances, such as external excitation, harmonic effects and control spillover, as well as high-frequency accelerometer measurement noise in the all-clamped stiffened plate. The proposed composite control action based on the modal approach, consists of two contributions including feedback part and feedforward part. The feedback part is the well-known PID controller, which is widely used to increase the structure damping and improve its dynamic performance close to the resonance frequencies. In order to get better performance for vibration suppression, the weight matrixes is optimized by chaos sequence. Then an improved disturbance observer (IDOB) as the feedforward compensation part is developed to enhance the vibration suppression performance of PID under various disturbances and uncertainties. The proposed IDOB can simultaneously estimate the various disturbances dynamically as well as measurement noise acting on the system and suppress them by feedforward compensation design. A rigorous analysis is also given to show why the IDOB can effectively suppress the unknown disturbances and measurement noise. In order to verify the proposed composite control algorithm (IDOB-PID), the dSPACE real-time simulation platform is used and an experimental platform for the all-clamped stiffened plate active vibration control system is set up. The experimental results demonstrate the effectiveness, practicality and strong anti-disturbances ability of the proposed control strategy.

Synthesis and Luminescence of Lu3(Al,Si)5(O,N)12:Ce3+ Phosphors

  • Ahn, Wonsik;Kim, Young Jin
    • Journal of the Korean Ceramic Society
    • /
    • v.53 no.4
    • /
    • pp.463-467
    • /
    • 2016
  • $Si^{4+}-N^{3-}$ was incorporated into $Ce^{3+}-doped$ lutetium aluminum garnet ($Lu_{2.965}Ce_{0.035}Al_5O_{12}$, $LuAG:Ce^{3+}$) lattices, resulting in the formation of $Lu_{2.965}Ce_{0.035}Al_{5-x}Si_xO_{12-x}N_x$ [(Lu,Ce)AG:xSN]. For x = 0-0.25, the synthesized powders consisted of the LuAG single phase, and the lattice constant decreased owing to the smaller $Si^{4+}$ ions. However, for x > 0.25, a small amount of unknown impurity phases was observed, and the lattice constant increased. Under 450 nm excitation, the PL spectrum of $LuAG:Ce^{3+}$ exhibited the green band, peaking at 505 nm. The incorporation of $Si^{4+}-N^{3-}$ into the $Al^{3+}-O^{2-}$ sites of $LuAG:Ce^{3+}$ led to a red-shift of the emission peak wavelength from 505 to 570 nm with increasing x. Corresponding CIE chromaticity coordinates varied from the green to yellow regions. These behaviors were discussed based on the modification of the $5d^1$ split levels and crystal field surroundings of $Ce^{3+}$, which arose from the Ce-(O,N)8 bonds.

System identification of steel framed structures with semi-rigid connections

  • Katkhuda, Hasan N.;Dwairi, Hazim M.;Shatarat, Nasim
    • Structural Engineering and Mechanics
    • /
    • v.34 no.3
    • /
    • pp.351-366
    • /
    • 2010
  • A novel system identification and structural health assessment procedure of steel framed structures with semi-rigid connections is presented in this paper. It is capable of detecting damages at the local element level under normal operating conditions; i.e., serviceability limit state. The procedure is a linear time-domain system identification technique in which the structure responses are required, whereas the dynamic excitation force is not required to identify the structural parameters. The procedure tracks changes in the stiffness properties of all the elements in a structure. It can identify damage-free and damaged structural elements very accurately when excited by different types of dynamic loadings. The method is elaborated with the help of several numerical examples. The results indicate that the proposed algorithm identified the structures correctly and detected the pre-imposed damages in the frames when excited by earthquake, impact, and harmonic loadings. The algorithm can potentially be used for structural health assessment and monitoring of existing structures with minimum disruption of operations. Since the procedure requires only a few time points of response information, it is expected to be economic and efficient.

Acceleration-based neural networks algorithm for damage detection in structures

  • Kim, Jeong-Tae;Park, Jae-Hyung;Koo, Ki-Young;Lee, Jong-Jae
    • Smart Structures and Systems
    • /
    • v.4 no.5
    • /
    • pp.583-603
    • /
    • 2008
  • In this study, a real-time damage detection method using output-only acceleration signals and artificial neural networks (ANN) is developed to monitor the occurrence of damage and the location of damage in structures. A theoretical approach of an ANN algorithm that uses acceleration signals to detect changes in structural parameters in real-time is newly designed. Cross-covariance functions of two acceleration responses measured before and after damage at two different sensor locations are selected as the features representing the structural conditions. By means of the acceleration features, multiple neural networks are trained for a series of potential loading patterns and damage scenarios of the target structure for which its actual loading history and structural conditions are unknown. The feasibility of the proposed method is evaluated using a numerical beam model under the effect of model uncertainty due to the variability of impulse excitation patterns used for training neural networks. The practicality of the method is also evaluated from laboratory-model tests on free-free beams for which acceleration responses were measured for several damage cases.

Time-frequency Analysis of Train Vibration Using Order Analysis and Correlation (오더분석 및 상관관계를 활용한 철도차량 진동 데이터의 시간-주파수 분석)

  • Choi, Sung-Hoon;Igusa, Takeru;Park, Choon-Soo
    • Journal of the Korean Society for Railway
    • /
    • v.12 no.6
    • /
    • pp.989-995
    • /
    • 2009
  • Short-time Fourier transforms (STFT) are useful for analyzing signals with harmonics that vary with time. If the variation of the harmonics with time is smooth, such as in kinematic vibrations in vehicles, then it is possible to improve the STFT using order spectra and correlation analysis. In this paper, it is shown how correlation analysis can be performed when the speed signal is noisy or unknown and then it is shown how order spectra become simple to compute after this analysis. The results are illustrated by an analysis of axle and car body vibrations in the prototype high-speed train, HSR-350x.

Synthesis and Luminescence Properties of a Cyan-blue Thiosilicate-based Phosphor $SrSi_2S_5:Eu^{2+}$

  • Nakamuraa, Masayoshi;Katoa, Hideki;Takatsuka, Yuji;Petrykinc, Valery;Tezuka, Satoko;Kakihana, Masato
    • Journal of Information Display
    • /
    • v.11 no.4
    • /
    • pp.135-139
    • /
    • 2010
  • A series of Sr-Si-S compounds was synthesized using an advanced chemical method in which the use of one solution-based process uniformly dispersed the $Eu^{2+}$ activators in the host crystals, to find new compositions that would suit phosphor applications. Particular focus was given to the Si-rich region. This led to the synthesis of a single-phase compound that showed an unknown X-ray diffraction pattern. This compound had a composition close to that of $SrSi_2S_5$. When this compound is activated with $Eu^{2+}$ ($SrSi_2S_5:Eu^{2+}$), it shows a cyan-blue emission with a main luminescence peak at 495 nm. This emission is excited by wavelengths of 250-440 nm and has a maximum excitation at 350 nm.

Probabilistic structural damage detection approaches based on structural dynamic response moments

  • Lei, Ying;Yang, Ning;Xia, Dandan
    • Smart Structures and Systems
    • /
    • v.20 no.2
    • /
    • pp.207-217
    • /
    • 2017
  • Because of the inevitable uncertainties such as structural parameters, external excitations and measurement noises, the effects of uncertainties should be taken into consideration in structural damage detection. In this paper, two probabilistic structural damage detection approaches are proposed to account for the underlying uncertainties in structural parameters and external excitation. The first approach adopts the statistical moment-based structural damage detection (SMBDD) algorithm together with the sensitivity analysis of the damage vector to the uncertain parameters. The approach takes the advantage of the strength SMBDD, so it is robust to measurement noise. However, it requests the number of measured responses is not less than that of unknown structural parameters. To reduce the number of measurements requested by the SMBDD algorithm, another probabilistic structural damage detection approach is proposed. It is based on the integration of structural damage detection using temporal moments in each time segment of measured response time history with the sensitivity analysis of the damage vector to the uncertain parameters. In both approaches, probability distribution of damage vector is estimated from those of uncertain parameters based on stochastic finite element model updating and probabilistic propagation. By comparing the two probability distribution characteristics for the undamaged and damaged models, probability of damage existence and damage extent at structural element level can be detected. Some numerical examples are used to demonstrate the performances of the two proposed approaches, respectively.

Calumenin Interacts with SERCA2 in Rat Cardiac Sarcoplasmic Reticulum

  • Sahoo, Sanjaya Kumar;Kim, Do Han
    • Molecules and Cells
    • /
    • v.26 no.3
    • /
    • pp.265-269
    • /
    • 2008
  • Calumenin, a multiple EF-hand $Ca^{2+}$ binding protein is located in the SR of mammalian heart, but the functional role of the protein in the heart is unknown. In the present study, an adenovirus gene transfer system was employed for neonatal rat heart to examine the effects of calumenin over-expression (Calu-OE) on $Ca^{2+}$ transients. Calu-OE (8 folds) did not alter the expression levels of DHPR, RyR2, NCX, SERCA2, CSQ and PLN. However, Calu-OE affected several parameters of $Ca^{2+}$ transients. Among them, prolongation of time to 50% baseline ($T_{50}$) was the most outstanding change in electrically-evoked $Ca^{2+}$ transients. The higher $T_{50}$ was due to an inhibition of SERCA2-mediated $Ca^{2+}$ uptake into SR, as tested by oxalate-supported $Ca^{2+}$ uptake. Furthermore, co-IP study showed a direct interaction between calumenin and SERCA2. Taken together, calumenin in the cardiac SR may play an important role in the regulation of $Ca^{2+}$ uptake during the EC coupling process.

Uncertainty quantification for structural health monitoring applications

  • Nasr, Dana E.;Slika, Wael G.;Saad, George A.
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.399-411
    • /
    • 2018
  • The difficulty in modeling complex nonlinear structures lies in the presence of significant sources of uncertainties mainly attributed to sudden changes in the structure's behavior caused by regular aging factors or extreme events. Quantifying these uncertainties and accurately representing them within the complex mathematical framework of Structural Health Monitoring (SHM) are significantly essential for system identification and damage detection purposes. This study highlights the importance of uncertainty quantification in SHM frameworks, and presents a comparative analysis between intrusive and non-intrusive techniques in quantifying uncertainties for SHM purposes through two different variations of the Kalman Filter (KF) method, the Ensemble Kalman filter (EnKF) and the Polynomial Chaos Kalman Filter (PCKF). The comparative analysis is based on a numerical example that consists of a four degrees-of-freedom (DOF) system, comprising Bouc-Wen hysteretic behavior and subjected to El-Centro earthquake excitation. The comparison is based on the ability of each technique to quantify the different sources of uncertainty for SHM purposes and to accurately approximate the system state and parameters when compared to the true state with the least computational burden. While the results show that both filters are able to locate the damage in space and time and to accurately estimate the system responses and unknown parameters, the computational cost of PCKF is shown to be less than that of EnKF for a similar level of numerical accuracy.