• Title/Summary/Keyword: university merger

Search Result 236, Processing Time 0.025 seconds

How the Lender-Borrower Relationship Influences M&As: an Analysis of a Strategic Action in Japan

  • Koo, Ja-Seung
    • Journal of Distribution Science
    • /
    • v.14 no.8
    • /
    • pp.93-100
    • /
    • 2016
  • Purpose - This study examines lenders' reactions to M&A, based on the strength of the lender-borrower relationship and the lender's expectations of the potential benefits or risks of the deal. Research design, data, and methodology - This research addresses the lender's influence on the implementation stage of a large-scale strategic action such as M&A to understand the motivation and dynamics of lenders' responses and empirically examines how the lender-borrower relationship influences the focal firm's merger and acquisition (M&A) transactions, using data on 501 M&A deals in Japan from 1990 to 2010. Results - The presented analysis found that lenders that have a strong lender-borrower relationship, especially those showing a high debt equity ratio, support borrowers' M&A progress and the target firm's lenders resist the deal progressing and may raise the acquisition premium if their current power relative to borrowers is weak. Conclusions - Stakeholders including lenders do not favor strategies of focal firms that threaten their future benefits, while they also tend to estimate the potential benefits and losses by comparing their current circumstances with those of other stakeholders. The empirical results of the presented analysis help explain the mechanism of lenders' reactions and offer insights into the power of a closer and stronger lender-borrower relationship.

Identifying potential mergers of globular clusters: a machine-learning approach

  • Pasquato, Mario
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.89-89
    • /
    • 2014
  • While the current consensus view holds that galaxy mergers are commonplace, it is sometimes speculated that Globular Clusters (GCs) may also have undergone merging events, possibly resulting in massive objects with a strong metallicity spread such as Omega Centauri. Galaxies are mostly far, unresolved systems whose mergers are most likely wet, resulting in observational as well as modeling difficulties, but GCs are resolved into stars that can be used as discrete dynamical tracers, and their mergers might have been dry, therefore easily simulated with an N-body code. It is however difficult to determine the observational parameters best suited to reveal a history of merging based on the positions and kinematics of GC stars, if evidence of merging is at all observable. To overcome this difficulty, we investigate the applicability of supervised and unsupervised machine learning to the automatic reconstruction of the dynamical history of a stellar system. In particular we test whether statistical clustering methods can classify simulated systems into monolithic versus merger products. We run direct N-body simulations of two identical King-model clusters undergoing a head-on collision resulting in a merged system, and other simulations of isolated King models with the same total number of particles as the merged system. After several relaxation times elapse, we extract a sample of snapshots of the sky-projected positions of particles from each simulation at different dynamical times, and we run a variety of clustering and classification algorithms to classify the snapshots into two subsets in a relevant feature space.

  • PDF

DISCOVERY OF VELOCITY INHOMOGENEITIES IN THE COMA, HYDRA, ABELL 2256 CLUSTER OF GALAXIES

  • Kim, Kwang-Tae
    • Publications of The Korean Astronomical Society
    • /
    • v.7 no.1
    • /
    • pp.39-50
    • /
    • 1992
  • A velocity inhomogeneity, which is the regional preponderence of either radial or tangential orbits, is searched with the new technique proposed by Kim (1992) for Coma, Hydra I, and Abell 2256 cluster of galaxies. Conspicuous inhomogeneities are found in the Coma and A2256 which X-ray isophotes are indicative for their underlying potentials being ellipitcal in shape, Even in their central regions, zones that are dominated by radial orbits are clearly distinguishable from that of the tangential orbits, and defining the cluster 'equator' as the direction of maximum elongation of the X-ray isophotes, radial orbits dominate along this direction whereas tangential orbits dominate the 'polar' zones. Merger events that are evidenced in X-ray observations occur in the equatorial zones of Coma and A2256, suggesting preponderence of radial orbits in the zones, which is in good agreement with their velocity structures. On the other hand, the inhomogeneity in Hydra I turns out to be insignificant in the central regions and this is just what is expected from a cluster whose X-ray isophotes is nearly circular. The velocity distribution in regions further out, however, shows significant inhomogeneity and this seems to support the previous results that this cluster is likely to have substructures and velocity anisotropy.

  • PDF

RE-ACCELERATION MODEL FOR THE 'SAUSAGE' RADIO RELIC

  • KANG, HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.49 no.4
    • /
    • pp.145-155
    • /
    • 2016
  • The Sausage radio relic is the arc-like radio structure in the cluster CIZA J2242.8+5301, whose observed properties can be best understood by synchrotron emission from relativistic electrons accelerated at a merger-driven shock. However, there remain a few puzzles that cannot be explained by the shock acceleration model with only in-situ injection. In particular, the Mach number inferred from the observed radio spectral index, Mradio ≈ 4.6, while the Mach number estimated from X-ray observations, MX−ray ≈ 2.7. In an attempt to resolve such a discrepancy, here we consider the re-acceleration model in which a shock of Ms ≈ 3 sweeps through the intracluster gas with a pre-existing population of relativistic electrons. We find that observed brightness profiles at multi frequencies provide strong constraints on the spectral shape of pre-existing electrons. The models with a power-law momentum spectrum with the slope, s ≈ 4.1, and the cutoff Lorentz factor, γe,c ≈ 3−5×104, can reproduce reasonably well the observed spatial profiles of radio fluxes and integrated radio spectrum of the Sausage relic. The possible origins of such relativistic electrons in the intracluster medium remain to be investigated further.

SHOCK ACCELERATION MODEL WITH POSTSHOCK TURBULENCE FOR GIANT RADIO RELICS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.50 no.4
    • /
    • pp.93-103
    • /
    • 2017
  • We explore the shock acceleration model for giant radio relics, in which relativistic electrons are accelerated via diffusive shock acceleration (DSA) by merger-driven shocks in the outskirts of galaxy clusters. In addition to DSA, turbulent acceleration by compressive MHD modes downstream of the shock are included as well as energy losses of postshock electrons due to Coulomb scattering, synchrotron emission, and inverse Compton scattering off the cosmic background radiation. Considering that only a small fraction of merging clusters host radio relics, we favor a reacceleration scenario in which radio relics are generated preferentially by shocks encountering the regions containing low-energy (${\gamma}_e{\leq}300$) cosmic ray electrons (CRe). We perform time-dependent DSA simulations of spherically expanding shocks with physical parameters relevant for the Sausage radio relic, and calculate the radio synchrotron emission from the accelerated CRe. We find that significant level of postshock turbulent acceleration is required in order to reproduce broad profiles of the observed radio flux densities of the Sausage relic. Moreover, the spectral curvature in the observed integrated radio spectrum can be explained, if the putative shock should have swept up and exited out of the preshock region of fossil CRe about 10 Myr ago.

COSMIC RAY ACCELERATION AT COSMOLOGICAL SHOCKS: NUMERICAL SIMULATIONS OF CR MODIFIED PLANE-PARALLEL SHOCKS

  • KANG HYESUNG
    • Journal of The Korean Astronomical Society
    • /
    • v.36 no.3
    • /
    • pp.111-121
    • /
    • 2003
  • In order to explore the cosmic ray acceleration at the cosmological shocks, we have performed numerical simulations of one-dimensional, plane-parallel, cosmic ray (CR) modified shocks with the newly developed CRASH (Cosmic Ray Amr SHock) numerical code. Based on the hypothesis that strong Alfven waves are self-generated by streaming CRs, the Bohm diffusion model for CRs is adopted. The code includes a plasma-physics-based 'injection' model that transfers a small proportion of the thermal proton flux through the shock into low energy CRs for acceleration there. We found that, for strong accretion shocks with Mach numbers greater than 10, CRs can absorb most of shock kinetic energy and the accretion shock speed is reduced up to $20\%$, compared to pure gas dynamic shocks. Although the amount of kinetic energy passed through accretion shocks is small, since they propagate into the low density intergalactic medium, they might possibly provide acceleration sites for ultra-high energy cosmic rays of $E\ll10^{18}eV$. For internal/merger shocks with Mach numbers less than 3, however, the energy transfer to CRs is only about $10-20\%$ and so nonlinear feedback due to the CR pressure is insignificant. Considering that intracluster medium (ICM) can be shocked repeatedly, however, the CRs generated by these weak shocks could be sufficient to explain the observed non-thermal signatures from clusters of galaxies.

Adopting Process Management-the Importance of Recognizing the Organizational Transformation

  • Hellstrom, Andreas;Peterson, Jonas
    • International Journal of Quality Innovation
    • /
    • v.7 no.1
    • /
    • pp.20-34
    • /
    • 2006
  • The purpose of this study is to investigate what happens within an organization when a process view of the business is adopted. With the example of an empirical case, we aim to illustrate: how members of the organization make sense of process management; what contributions members of the organization consider to be the result of adopting a process view; and the relationship between the functional and the process structure. The empirical base in this study is one of Sweden's largest purchasing organizations within the public sector. The results are drawn from interviews with the process owners and a survey to all members involved in process teams. The case findings reveal an ambiguous image of process management. At the same time as process management solved specific organizational problems, it generated new dilemmas. It is argued that it is more rewarding to consider the adoption of the process view a 'social negotiation' rather than the result of planned implementation. The study also highlights that the meaning of process management is not anything given but something being created, and its negotiation and translation into organizational practice is open-ended. Furthermore, the study gives an illustration of the conflict between the adopted process view and the existing functional organization.

RE-ACCELERATION OF FOSSIL ELECTRONS BY SHOCKS ENCOUNTERING HOT BUBBLES IN THE OUTSKIRTS OF GALAXY CLUSTERS

  • Kang, Hyesung
    • Journal of The Korean Astronomical Society
    • /
    • v.51 no.6
    • /
    • pp.185-195
    • /
    • 2018
  • Galaxy clusters are known to host many active galaxies (AGNs) with radio jets, which could expand to form radio bubbles with relativistic electrons in the intracluster medium (ICM). It has been suggested that fossil relativistic electrons contained in remnant bubbles from extinct radio galaxies can be re-accelerated to radio-emitting energies by merger-driven shocks via diffusive shock acceleration (DSA), leading to the birth of radio relics detected in clusters. In this study we assume that such bubble consist primarily of thermal gas entrained from the surrounding medium and dynamically-insignificant amounts of relativistic electrons. We also consider several realistic models for magnetic fields in the cluster outskirts, including the ICM field that scales with the gas density as $B_{ICM}{\infty}n^{0.5}_{ICM}$. Then we perform time-dependent DSA simulations of a spherical shock that runs into a lower-density but higher-temperature bubble with the ratio $n_b/n_{ICM}{\approx}T_{ICM}/T_b{\approx}0.5$. We find that inside the bubble the shock speed increases by about 20 %, but the Mach number decreases by about 15% in the case under consideration. In this re-acceleration model, the observed properties of a radio relic such as radio flux, spectral index, and integrated spectrum would be governed mainly by the presence of seed relativistic electrons and the magnetic field profile as well as shock dynamics. Thus it is crucial to understand how fossil electrons are deposited by AGNs in the ICM and how the downstream magnetic field evolves behind the shock in detailed modeling of radio relics.

Bar Formation and Enhancement of Star Formation in Disk Galaxies in Interacting Clusters

  • Yoon, Yongmin;Im, Myungshin
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.45 no.1
    • /
    • pp.31.1-31.1
    • /
    • 2020
  • A merger or interaction between galaxy clusters is one of the most violent events in the universe. Thus, an interacting cluster is an optimum laboratory to understand how galaxy properties are influenced by a drastic change of the large-scale environment. Here, we present the observational evidence that bars in disk galaxies can form by cluster-cluster interaction and the bar formation is associated with star-formation enhancement. We investigated 105 galaxy clusters at 0.015

  • PDF

Developing Programming Education Software with Generative AI (생성형 인공지능을 활용한 프로그래밍 교육 소프트웨어 개발)

  • Do-hyeon Choi
    • Journal of Practical Engineering Education
    • /
    • v.15 no.3
    • /
    • pp.589-595
    • /
    • 2023
  • Artificial intelligence(AI) is spurring advancements in EdTech, the merger of technology and education. This includes the creation of effective learning materials and personalized student experiences. Our study focuses on developing a programming education software that employs state-of-the-art generative AI. Our software also includes prompts optimized for programming code analysis, which are based on the well-known ChatGPT API. Furthermore, the necessary functions for acquiring programming skills were created with a user interface and developed as a question-and-answer template function based on an AI chatbot. The objective of this study is to guide the development of educational programmes that make use of generative AI.