• Title/Summary/Keyword: university laboratory safety

Search Result 1,624, Processing Time 0.029 seconds

Cesium Radioisotope Measurement Method for Environmental Soil by Ammonium Molybdophosphate (환경토양에서 몰리브도인산 암모늄을 이용한 세슘 동위원소 평가방법)

  • Choe, Yeong-hun;Seo, Yang Gon
    • Clean Technology
    • /
    • v.22 no.2
    • /
    • pp.122-131
    • /
    • 2016
  • Caesium radioisotopes, 134Cs and 137Cs which come from the atmospheric nuclear tests and discharges from nuclear power plants, are very important to study artificial radioactivity. In this work, in order to lower the minimum detection activity (MDA) we investigated environmental radioactivity according to the Environment Measurement Laboratory procedure by 137Cs and 134Cs which is similar to chemical and environmental behaviors of 137Cs. The environmental soils in high mountain areas near nuclear power plant were collected, and an Ammonium Molybdophosphate (AMP) precipitation method, which showed high selectivity toward Cs+ ions, was applied to chemically extract and concentrate Caesium radioisotopes. Radioactivity was estimated by a gamma-ray spectrometry. In gamma energy spectrum, with an increasing of 40K radioactivity, it increased the MDA of 134Cs and 137Cs. Therefore, if the natural radionuclides were removed from the soil samples, the MDA of Caesium may be reduced, and the contents of 137Cs of in the environmental soils can effectively be estimated. In the standard soil sample of Korea Institute of Nuclear Safety, radioactivity of 40K was removed more than 84% on average, and the MDA of 134Cs was reduced 2 times. The content of 137Cs was recovered over 84%. On the other hand, in environmental soils, AMP precipitation method showed removal ratio of 40K up to 180 times, which reduced the MDA about 5 times smaller than those of Direct method. 137Cs recovery ratio showed from 54.54% to 70.06%. When considering the MDA and recovery ratio, AMP precipitation method is effective for detection of Caesium radioisotopes in low concentration.

Firefighters' Exposures to Polynuclear Aromatic Hydrocarbons and Volatile Organic Compounds by Tasks in Some Fire Scenes in Korea (일부 화재현장에서 소방공무원의 직무별 다핵방향족탄화수소 및 휘발성유기화합물 노출평가)

  • Jin, Suhyun;Byun, Hyaejeong;Kang, Taesun
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.29 no.4
    • /
    • pp.477-487
    • /
    • 2019
  • Objectives: Firefighters are known to be exposed to a variety of toxic substances, but little information is available on the exposure profile of firefighting activities. The aims of this study were to conduct exposure monitoring of toxic chemicals at fire scenes, to compare the concentrations of respective chemicals among firefighting tasks, and to assess the main factors influencing the concentrations of chemicals. Methods: Researchers performed sampling at firefighting scenes during four weeks in 2013. At the scene, we collected samples based on firefighters' own activities and examined the situation and scale of the accident. Collected samples were classified into three categories, including fire extinguishing and overhaul, and were analyzed in the laboratory according to respective analysis methods. Results: A total of fourteen fire activity events were surveyed: five fire extinguishing, six overhaul, and three fire investigations. Although no substance exceeded the ACGIH TLV, PAHs were detected in every sample. Naphthalene ranged from 0.24 to 279.13 mg/㎥ (median 49.6 mg/㎥) and benzo(a)pyrene was detected in one overhaul case at 10.85 ㎍/㎥. Benzene (0.01-12.2 ppm) was detected in every task and exceeded the ACGIH TLV. No significant difference in concentrations between tasks was shown. Conclusions: These results indicate that all firefighting tasks generated various hazardous combustion products, including possible carcinogens.

Shielding for Critical Organs and Radiation Exposure Dose Distribution in Patients with High Energy Radiotherapy (고 에너지 방사선치료에서 환자의 피폭선량 분포와 생식선의 차폐)

  • Chu, Sung-Sil;Suh, Chang-Ok;Kim, Gwi-Eon
    • Journal of Radiation Protection and Research
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 2002
  • High energy photon beams from medical linear accelerators produce large scattered radiation by various components of the treatment head, collimator and walls or objects in the treatment room including the patient. These scattered radiation do not provide therapeutic dose and are considered a hazard from the radiation safety perspective. Scattered dose of therapeutic high energy radiation beams are contributed significant unwanted dose to the patient. ICRP take the position that a dose of 500mGy may cause abortion at any stage of pregnancy and that radiation detriment to the fetus includes risk of mental retardation with a possible threshold in the dose response relationship around 100 mGy for the gestational period. The ICRP principle of as low as reasonably achievable (ALARA) was recommended for protection of occupation upon the linear no-threshold dose response hypothesis for cancer induction. We suggest this ALARA principle be applied to the fetus and testicle in therapeutic treatment. Radiation dose outside a photon treatment filed is mostly due to scattered photons. This scattered dose is a function of the distance from the beam edge, treatment geometry, primary photon energy, and depth in the patient. The need for effective shielding of the fetus and testicle is reinforced when young patients ate treated with external beam radiation therapy and then shielding designed to reduce the scattered photon dose to normal organs have to considered. Irradiation was performed in phantom using high energy photon beams produced by a Varian 2100C/D medical linear accelerator (Varian Oncology Systems, Palo Alto, CA) located at the Yonsei Cancer Center. The composite phantom used was comprised of a commercially available anthropomorphic Rando phantom (Phantom Laboratory Inc., Salem, YN) and a rectangular solid polystyrene phantom of dimensions $30cm{\times}30cm{\times}20cm$. the anthropomorphic Rando phantom represents an average man made from tissue equivalent materials that is transected into transverse 36 slices of 2.5cm thickness. Photon dose was measured using a Capintec PR-06C ionization chamber with Capintec 192 electrometer (Capintec Inc., Ramsey, NJ), TLD( VICTOREEN 5000. LiF) and film dosimetry V-Omat, Kodak). In case of fetus, the dosimeter was placed at a depth of loom in this phantom at 100cm source to axis distance and located centrally 15cm from the inferior edge of the $30cm{\times}30cm^2$ x-ray beam irradiating the Rando phantom chest wall. A acryl bridge of size $40cm{\times}40cm^2$ and a clear space of about 20 cm was fabricated and placed on top of the rectangular polystyrene phantom representing the abdomen of the patient. The leaf pot for testicle shielding was made as various shape, sizes, thickness and supporting stand. The scattered photon with and without shielding were measured at the representative position of the fetus and testicle. Measurement of radiation scattered dose outside fields and critical organs, like fetus position and testicle region, from chest or pelvic irradiation by large fie]d of high energy radiation beam was performed using an ionization chamber and film dosimetry. The scattered doses outside field were measured 5 - 10% of maximum doses in fields and exponentially decrease from field margins. The scattered photon dose received the fetus and testicle from thorax field irradiation was measured about 1 mGy/Gy of photon treatment dose. Shielding construction to reduce this scattered dose was investigated using lead sheet and blocks. Lead pot shield for testicle reduced the scatter dose under 10 mGy when photon beam of 60 Gy was irradiated in abdomen region. The scattered photon dose is reduced when the lead shield was used while the no significant reduction of scattered photon dose was observed and 2-3 mm lead sheets refuted the skin dose under 80% and almost electron contamination. The results indicate that it was possible to improve shielding to reduce scattered photon for fetus and testicle when a young patients were treated with a high energy photon beam.

Studies on the Kiln Drying Characteristics of Several Commercial Woods of Korea (국산 유용 수종재의 인공건조 특성에 관한 연구)

  • Chung, Byung-Jae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.2 no.2
    • /
    • pp.8-12
    • /
    • 1974
  • 1. If one unity is given to the prongs whose ends touch each other for estimating the internal stresses occuring in it, the internal stresses which are developed in the open prongs can be evaluated by the ratio to the unity. In accordance with the above statement, an equation was derived as follows. For employing this equation, the prongs should be made as shown in Fig. I, and be measured A and B' as indicated in Fig. l. A more precise value will result as the angle (J becomes smaller. $CH=\frac{(A-B') (4W+A) (4W-A)}{2A[(2W+(A-B')][2W-(A-B')]}{\times}100%$ where A is thickness of the prong, B' is the distance between the two prongs shown in Fig. 1 and CH is the value of internal stress expressed by percentage. It precision is not required, the equation can be simplified as follows. $CH=\frac{A-B'}{A}{\times}200%$ 2. Under scheduled drying condition III the kiln, when the weight of a sample board is constant, the moisture content of the shell of a sample board in the case of a normal casehardening is lower than that of the equilibrium moisture content which is indicated by the Forest Products Laboratory, U. S. Department of Agriculture. This result is usually true, especially in a thin sample board. A thick unseasoned or reverse casehardened sample does not follow in the above statement. 3. The results in the comparison of drying rate with five different kinds of wood given in Table 1 show that the these drying rates, i.e., the quantity of water evaporated from the surface area of I centimeter square per hour, are graded by the order of their magnitude as follows. (1) Ginkgo biloba Linne (2) Diospyros Kaki Thumberg. (3) Pinus densiflora Sieb. et Zucc. (4) Larix kaempheri Sargent (5) Castanea crenata Sieb. et Zucc. It is shown, for example, that at the moisture content of 20 percent the highest value revealed by the Ginkgo biloba is in the order of 3.8 times as great as that for Castanea crenata Sieb. & Zucc. which has the lowest value. Especially below the moisture content of 26 percent, the drying rate, i.e., the function of moisture content in percentage, is represented by the linear equation. All of these linear equations are highly significant in testing the confficient of X i. e., moisture content in percentage. In the Table 2, the symbols are expressed as follows; Y is the quantity of water evaporated from the surface area of 1 centimeter square per hour, and X is the moisture content of the percentage. The drying rate is plotted against the moisture content of the percentage as in Fig. 2. 4. One hundred times the ratio(P%) of the number of samples occuring in the CH 4 class (from 76 to 100% of CH ratio) within the total number of saplmes tested to those of the total which underlie the given SR ratio is measured in Table 3. (The 9% indicated above is assumed as the danger probability in percentage). In summarizing above results, the conclusion is in Table 4. NOTE: In Table 4, the column numbers such as 1. 2 and 3 imply as follows, respectively. 1) The minimum SR ratio which does not reveal the CH 4, class is indicated as in the column 1. 2) The extent of SR ratio which is confined in the safety allowance of 30 percent is shown in the column 2. 3) The lowest limitation of SR ratio which gives the most danger probability of 100 percent is shown in column 3. In analyzing above results, it is clear that chestnut and larch easly form internal stress in comparison with persimmon and pine. However, in considering the fact that the revers, casehardening occured in fir and ginkgo, under the same drying condition with the others, it is deduced that fir and ginkgo form normal casehardening with difficulty in comparison with the other species tested. 5. All kinds of drying defects except casehardening are developed when the internal stresses are in excess of the ultimate strength of material in the case of long-lime loading. Under the drying condition at temperature of $170^{\circ}F$ and the lower humidity. the drying defects are not so severe. However, under the same conditions at $200^{\circ}F$, the lower humidity and not end coated, all sample boards develop severe drying defects. Especially the chestnut was very prone to form the drying defects such as casehardening and splitting.

  • PDF