• Title/Summary/Keyword: university e-learning

Search Result 2,123, Processing Time 0.032 seconds

Development of a Model of Brain-based Evolutionary Scientific Teaching for Learning (뇌기반 진화적 과학 교수학습 모형의 개발)

  • Lim, Chae-Seong
    • Journal of The Korean Association For Science Education
    • /
    • v.29 no.8
    • /
    • pp.990-1010
    • /
    • 2009
  • To derive brain-based evolutionary educational principles, this study examined the studies on the structural and functional characteristics of human brain, the biological evolution occurring between- and within-organism, and the evolutionary attributes embedded in science itself and individual scientist's scientific activities. On the basis of the core characteristics of human brain and the framework of universal Darwinism or universal selectionism consisted of generation-test-retention (g-t-r) processes, a Model of Brain-based Evolutionary Scientific Teaching for Learning (BEST-L) was developed. The model consists of three components, three steps, and assessment part. The three components are the affective (A), behavioral (B), and cognitive (C) components. Each component consists of three steps of Diversifying $\rightarrow$ Emulating (Executing, Estimating, Evaluating) $\rightarrow$ Furthering (ABC-DEF). The model is 'brain-based' in the aspect of consecutive incorporation of the affective component which is based on limbic system of human brain associated with emotions, the behavioral component which is associated with the occipital lobes performing visual processing, temporal lobes performing functions of language generation and understanding, and parietal lobes, which receive and process sensory information and execute motor activities of the body, and the cognitive component which is based on the prefrontal lobes involved in thinking, planning, judging, and problem solving. On the other hand, the model is 'evolutionary' in the aspect of proceeding according to the processes of the diversifying step to generate variants in each component, the emulating step to test and select useful or valuable things among the variants, and the furthering step to extend or apply the selected things. For three components of ABC, to reflect the importance of emotional factors as a starting point in scientific activity as well as the dominant role of limbic system relative to cortex of brain, the model emphasizes the DARWIN (Driving Affective Realm for Whole Intellectual Network) approach.

KoFlux's Progress: Background, Status and Direction (KoFlux 역정: 배경, 현황 및 향방)

  • Kwon, Hyo-Jung;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.241-263
    • /
    • 2010
  • KoFlux is a Korean network of micrometeorological tower sites that use eddy covariance methods to monitor the cycles of energy, water, and carbon dioxide between the atmosphere and the key terrestrial ecosystems in Korea. KoFlux embraces the mission of AsiaFlux, i.e. to bring Asia's key ecosystems under observation to ensure quality and sustainability of life on earth. The main purposes of KoFlux are to provide (1) an infrastructure to monitor, compile, archive and distribute data for the science community and (2) a forum and short courses for the application and distribution of knowledge and data between scientists including practitioners. The KoFlux community pursues the vision of AsiaFlux, i.e., "thinking community, learning frontiers" by creating information and knowledge of ecosystem science on carbon, water and energy exchanges in key terrestrial ecosystems in Asia, by promoting multidisciplinary cooperations and integration of scientific researches and practices, and by providing the local communities with sustainable ecosystem services. Currently, KoFlux has seven sites in key terrestrial ecosystems (i.e., five sites in Korea and two sites in the Arctic and Antarctic). KoFlux has systemized a standardized data processing based on scrutiny of the data observed from these ecosystems and synthesized the processed data for constructing database for further uses with open access. Through publications, workshops, and training courses on a regular basis, KoFlux has provided an agora for building networks, exchanging information among flux measurement and modelling experts, and educating scientists in flux measurement and data analysis. Despite such persistent initiatives, the collaborative networking is still limited within the KoFlux community. In order to break the walls between different disciplines and boost up partnership and ownership of the network, KoFlux will be housed in the National Center for Agro-Meteorology (NCAM) at Seoul National University in 2011 and provide several core services of NCAM. Such concerted efforts will facilitate the augmentation of the current monitoring network, the education of the next-generation scientists, and the provision of sustainable ecosystem services to our society.

Principles and Current Trends of Neural Decoding (뉴럴 디코딩의 원리와 최신 연구 동향 소개)

  • Kim, Kwangsoo;Ahn, Jungryul;Cha, Seongkwang;Koo, Kyo-in;Goo, Yong Sook
    • Journal of Biomedical Engineering Research
    • /
    • v.38 no.6
    • /
    • pp.342-351
    • /
    • 2017
  • The neural decoding is a procedure that uses spike trains fired by neurons to estimate features of original stimulus. This is a fundamental step for understanding how neurons talk each other and, ultimately, how brains manage information. In this paper, the strategies of neural decoding are classified into three methodologies: rate decoding, temporal decoding, and population decoding, which are explained. Rate decoding is the firstly used and simplest decoding method in which the stimulus is reconstructed from the numbers of the spike at given time (e. g. spike rates). Since spike number is a discrete number, the spike rate itself is often not continuous and quantized, therefore if the stimulus is not static and simple, rate decoding may not provide good estimation for stimulus. Temporal decoding is the decoding method in which stimulus is reconstructed from the timing information when the spike fires. It can be useful even for rapidly changing stimulus, and our sensory system is believed to have temporal rather than rate decoding strategy. Since the use of large numbers of neurons is one of the operating principles of most nervous systems, population decoding has advantages such as reduction of uncertainty due to neuronal variability and the ability to represent a stimulus attributes simultaneously. Here, in this paper, three different decoding methods are introduced, how the information theory can be used in the neural decoding area is also given, and at the last machinelearning based algorithms for neural decoding are introduced.

Ameliorative effect of onion (Allium Cepa L.) flesh and peel on amyloid-β-induced cognitive dysfunction via mitochondrial activation (미토콘드리아 활성화를 통한 양파(Allium Cepa L.) 과육 및 과피의 Amyloid-β 유도성 인지손상에 대한 개선효과)

  • Park, Seon Kyeong;Lee, Uk;Kang, Jin Yong;Kim, Jong Min;Shin, Eun Jin;Heo, Ho Jin
    • Korean Journal of Food Science and Technology
    • /
    • v.52 no.3
    • /
    • pp.263-273
    • /
    • 2020
  • In this study, in order to confirm the ameliorative effects of onion (Allium cepa L.) flesh and peel on amyloidbeta (Aβ)-induced cognitive dysfunction, we evaluated their in vitro neuroprotection and in vivo cognitive functions. As the result of in vitro neuroprotection, the protective effect of the ethyl acetate fraction of onion flesh (EOF) on Aβ-induced cytotoxicity was similar to that of the ethyl acetate fraction of onion peel (EOP). In the behavioral tests, the EOF and EOP effectively improved the Aβ-induced learning and memory impairments. For this reason, it could be concluded that the EOF and EOP improved the antioxidant activities (superoxide dismutase, oxidized glutathione/total glutathione, and malondialdehyde) in brain tissue. In addition, the EOF and EOP effectively activated mitochondrial functions by protecting the mitochondrial membrane potential, ATP, mitochondria-mediated protein (BAX and cytochrome c), and caspase 3/7 activities. The EOF and EOP also improved the cholinergic system (acetylcholinesterase and acetylcholine). Therefore, we suggest that onion could be used for management of Aβ-induced cognitive dysfunction.

Problems of Applying Information Technologies in Public Governance

  • Goshovska, Valentyna;Danylenko, Lydiia;Hachkov, Andrii;Paladiiichuk, Sergii;Dzeha, Volodymyr
    • International Journal of Computer Science & Network Security
    • /
    • v.21 no.8
    • /
    • pp.71-78
    • /
    • 2021
  • The relevance of research provides the necessity to identify the basic problems in the public governance sphere and information technology relations, forasmuch as understanding such interconnections can indicate the consequences of the development and spreading information technologies. The purpose of the research is to outline the issues of applying information technologies in public governance sphere. 500 civil servants took part in the survey (Ukraine). A two-stage study was conducted in order to obtain practical results of the research. The first stage involved collecting and analyzing the responses of civil servants on the Mentimeter online platform. In the second stage, the administrator used the SWOT-analysis system. The tendencies in using information technologies have been determined as follows: the institutional support development; creation of analytical portals for ensuring public control; level of accountability, transparency, activity of civil servants; implementation of e-government projects; changing the philosophy of electronic services development. Considering the threats and risks to the public governance system in the context of applying information technologies, the following aspects generated by societal requirements have been identified, namely: creation of the digital bureaucracy system; preservation of information and digital inequality; insufficient level of knowledge and skills in the field of digital technologies, reducing the publicity of the state and municipal governance system. Weaknesses of modern public governance in the context of IT implementation have been highlighted, namely: "digitization for digitalization"; lack of necessary legal regulation; inefficiency of electronic document management (issues caused by the imperfection of the interface of reporting interactive forms, frequent changes in the composition of indicators in reporting forms, the desire of higher authorities to solve the problem of their introduction); lack of data analysis infrastructure (due to imperfections in the organization of interaction between departments and poor capacity of information resources; lack of analytical databases), lack of necessary digital competencies for civil servants. Based on the results of SWOT-analysis, the strengths have been identified as follows: (possibility of continuous communication; constant self-learning); weaknesses (age restrictions for civil servants; insufficient acquisition of knowledge); threats (system errors in the provision of services through automation); opportunities for the introduction of IT in the public governance system (broad global trends; facilitation of the document management system). The practical significance of the research lies in providing recommendations for eliminating the problems of IT implementation in the public governance sphere outlined by civil servants..

The Usage of Modern Information Technologies for Conducting Effective Monitoring of Quality in Higher Education

  • Oseredchuk, Olga;Nikolenko, Lyudmyla;Dolynnyi, Serhii;Ordatii, Nataliia;Sytnik, Tetiana;Stratan-Artyshkova, Tatiana
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.1
    • /
    • pp.113-120
    • /
    • 2022
  • Information technologies in higher education are the basis for solving the tasks set by monitoring the quality of higher education. The directions of aplying information technologies which are used the most nowadays have been listed. The issues that should be addressed by monitoring the quality of higher education with the use of information technology have been listed. The functional basis for building a monitoring system is the cyclical stages: Observation; Orientation; Decision; Action. The monitoring system's considered cyclicity ensures that the concept of independent functioning of the monitoring system's subsystems is implemented.. It also ensures real-time task execution and information availability for all levels of the system's hierarchy of vertical and horizontal links, with the ability to restrict access. The educational branch uses information and computer technologies to monitor research results, which are realized in: scientific, reference, and educational output; electronic resources; state standards of education; analytical materials; materials for state reports; expert inferences on current issues of education and science; normative legal documents; state and sectoral programs; conference recommendations; informational, bibliographic, abstract, review publications; digests. The quality of Ukrainian scientists' scientific work is measured using a variety of bibliographic markers. The most common is the citation index. In order to carry out high-quality systematization of information and computer monitoring technologies, the classification has been carried out on the basis of certain features: (processual support for implementation by publishing, distributing and using the results of research work). The advantages and disadvantages of using web-based resources and services as information technology tools have been discussed. A set of indicators disclosed in the article evaluates the effectiveness of any means or method of observation and control over the object of monitoring. The use of information technology for monitoring and evaluating higher education is feasible and widespread in Ukrainian education, and it encourages the adoption of e-learning. The functional elements that stand out in the information-analytical monitoring system have been disclosed.

Accelerometer-based Gesture Recognition for Robot Interface (로봇 인터페이스 활용을 위한 가속도 센서 기반 제스처 인식)

  • Jang, Min-Su;Cho, Yong-Suk;Kim, Jae-Hong;Sohn, Joo-Chan
    • Journal of Intelligence and Information Systems
    • /
    • v.17 no.1
    • /
    • pp.53-69
    • /
    • 2011
  • Vision and voice-based technologies are commonly utilized for human-robot interaction. But it is widely recognized that the performance of vision and voice-based interaction systems is deteriorated by a large margin in the real-world situations due to environmental and user variances. Human users need to be very cooperative to get reasonable performance, which significantly limits the usability of the vision and voice-based human-robot interaction technologies. As a result, touch screens are still the major medium of human-robot interaction for the real-world applications. To empower the usability of robots for various services, alternative interaction technologies should be developed to complement the problems of vision and voice-based technologies. In this paper, we propose the use of accelerometer-based gesture interface as one of the alternative technologies, because accelerometers are effective in detecting the movements of human body, while their performance is not limited by environmental contexts such as lighting conditions or camera's field-of-view. Moreover, accelerometers are widely available nowadays in many mobile devices. We tackle the problem of classifying acceleration signal patterns of 26 English alphabets, which is one of the essential repertoires for the realization of education services based on robots. Recognizing 26 English handwriting patterns based on accelerometers is a very difficult task to take over because of its large scale of pattern classes and the complexity of each pattern. The most difficult problem that has been undertaken which is similar to our problem was recognizing acceleration signal patterns of 10 handwritten digits. Most previous studies dealt with pattern sets of 8~10 simple and easily distinguishable gestures that are useful for controlling home appliances, computer applications, robots etc. Good features are essential for the success of pattern recognition. To promote the discriminative power upon complex English alphabet patterns, we extracted 'motion trajectories' out of input acceleration signal and used them as the main feature. Investigative experiments showed that classifiers based on trajectory performed 3%~5% better than those with raw features e.g. acceleration signal itself or statistical figures. To minimize the distortion of trajectories, we applied a simple but effective set of smoothing filters and band-pass filters. It is well known that acceleration patterns for the same gesture is very different among different performers. To tackle the problem, online incremental learning is applied for our system to make it adaptive to the users' distinctive motion properties. Our system is based on instance-based learning (IBL) where each training sample is memorized as a reference pattern. Brute-force incremental learning in IBL continuously accumulates reference patterns, which is a problem because it not only slows down the classification but also downgrades the recall performance. Regarding the latter phenomenon, we observed a tendency that as the number of reference patterns grows, some reference patterns contribute more to the false positive classification. Thus, we devised an algorithm for optimizing the reference pattern set based on the positive and negative contribution of each reference pattern. The algorithm is performed periodically to remove reference patterns that have a very low positive contribution or a high negative contribution. Experiments were performed on 6500 gesture patterns collected from 50 adults of 30~50 years old. Each alphabet was performed 5 times per participant using $Nintendo{(R)}$ $Wii^{TM}$ remote. Acceleration signal was sampled in 100hz on 3 axes. Mean recall rate for all the alphabets was 95.48%. Some alphabets recorded very low recall rate and exhibited very high pairwise confusion rate. Major confusion pairs are D(88%) and P(74%), I(81%) and U(75%), N(88%) and W(100%). Though W was recalled perfectly, it contributed much to the false positive classification of N. By comparison with major previous results from VTT (96% for 8 control gestures), CMU (97% for 10 control gestures) and Samsung Electronics(97% for 10 digits and a control gesture), we could find that the performance of our system is superior regarding the number of pattern classes and the complexity of patterns. Using our gesture interaction system, we conducted 2 case studies of robot-based edutainment services. The services were implemented on various robot platforms and mobile devices including $iPhone^{TM}$. The participating children exhibited improved concentration and active reaction on the service with our gesture interface. To prove the effectiveness of our gesture interface, a test was taken by the children after experiencing an English teaching service. The test result showed that those who played with the gesture interface-based robot content marked 10% better score than those with conventional teaching. We conclude that the accelerometer-based gesture interface is a promising technology for flourishing real-world robot-based services and content by complementing the limits of today's conventional interfaces e.g. touch screen, vision and voice.

The Validity and Reliability of 'Computerized Neurocognitive Function Test' in the Elementary School Child (학령기 정상아동에서 '전산화 신경인지기능검사'의 타당도 및 신뢰도 분석)

  • Lee, Jong-Bum;Kim, Jin-Sung;Seo, Wan-Seok;Shin, Hyoun-Jin;Bai, Dai-Seg;Lee, Hye-Lin
    • Korean Journal of Psychosomatic Medicine
    • /
    • v.11 no.2
    • /
    • pp.97-117
    • /
    • 2003
  • Objective: This study is to examine the validity and reliability of Computerized Neurocognitive Function Test among normal children in elementary school. Methods: K-ABC, K-PIC, and Computerized Neurocognitive Function Test were performed to the 120 body of normal children(10 of each male and female) from June, 2002 to January, 2003. Those children had over the average of intelligence and passed the rule out criteria. To verify test-retest reliability for those 30 children who were randomly selected, Computerized Neurocognitive Function Test was carried out again 4 weeks later. Results: As a results of correlation analysis for validity test, four of continues performance tests matched with those on adults. In the memory tests, results presented the same as previous research with a difference between forward test and backward test in short-term memory. In higher cognitive function tests, tests were consist of those with different purpose respectively. After performing factor analysis on 43 variables out of 12 tests, 10 factors were raised and the total percent of variance was 75.5%. The reasons were such as: 'sustained attention, information processing speed, vigilance, verbal learning, allocation of attention and concept formation, flexibility, concept formation, visual learning, short-term memory, and selective attention' in order. In correlation with K-ABC to prepare explanatory criteria, selectively significant correlation(p<.0.5-001) was found in subscale of K-ABC. In the test-retest reliability test, the results reflecting practice effect were found and prominent especially in higher cognitive function tests. However, split-half reliability(r=0.548-0.7726, p<.05) and internal consistency(0.628-0.878, p<.05) of each examined group were significantly high. Conclusion: The performance of Computerized Neurocognitive Function Test in normal children represented differ developmental character than that in adult. And basal information for preparing the explanatory criteria could be acquired by searching for the relation with standardized intelligence test which contains neuropsycological background.

  • PDF

An Analysis of Research Trend for Integrated Understanding of Environmental Issues: Focusing on Science Education Research on Carbon Cycle (환경 문제의 통합적 이해를 위한 국내외 연구 동향 분석 -탄소 순환 주제의 과학 교육을 중심으로-)

  • Park, Byung-Yeol;Jeon, Jaedon;Lee, Hyundong;Lee, Hyonyong
    • Journal of The Korean Association For Science Education
    • /
    • v.40 no.3
    • /
    • pp.237-251
    • /
    • 2020
  • Issues on climate change we are facing, such as global warming, are very important as it affects our lives directly. To overcome this, efforts to reduce greenhouse gases emissions (e.g., carbon dioxide) are necessary and these efforts should be based on our integrated understanding of carbon cycle. The purpose of this study is to examine the research trend on carbon cycle education and to suggest the value and direction of carbon cycle education for students who will be citizens of the future. We analyzed 52 carbon cycle education related studies collected from academic research databases (RISS, KCI, ERIC, Google Scholar, and others). As a result, we conclude that resources are still limited and more researches on verification and utilization of developed program, development of accurate and comprehensive tools for students' recognition and level assessment, developing educational model or teacher professional development, providing more appropriate curriculum resources, and the use of various topics or materials for carbon cycle education are necessary. Students' comprehensive understanding of the carbon cycle is important to actively react to the changes in the global environment. Therefore, to support such learning opportunities, resources that can be connected to students' daily experiences to improve students' understanding of carbon cycle and replace misconceptions based on the verification of existing programs should be provided in the classroom as well as the curriculum. In addition, sufficient exemplary cases in carbon cycle education including various materials and topics should be provided through professional development to support teachers teaching strategies with carbon cycle.

A Hybrid Collaborative Filtering-based Product Recommender System using Search Keywords (검색 키워드를 활용한 하이브리드 협업필터링 기반 상품 추천 시스템)

  • Lee, Yunju;Won, Haram;Shim, Jaeseung;Ahn, Hyunchul
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.1
    • /
    • pp.151-166
    • /
    • 2020
  • A recommender system is a system that recommends products or services that best meet the preferences of each customer using statistical or machine learning techniques. Collaborative filtering (CF) is the most commonly used algorithm for implementing recommender systems. However, in most cases, it only uses purchase history or customer ratings, even though customers provide numerous other data that are available. E-commerce customers frequently use a search function to find the products in which they are interested among the vast array of products offered. Such search keyword data may be a very useful information source for modeling customer preferences. However, it is rarely used as a source of information for recommendation systems. In this paper, we propose a novel hybrid CF model based on the Doc2Vec algorithm using search keywords and purchase history data of online shopping mall customers. To validate the applicability of the proposed model, we empirically tested its performance using real-world online shopping mall data from Korea. As the number of recommended products increases, the recommendation performance of the proposed CF (or, hybrid CF based on the customer's search keywords) is improved. On the other hand, the performance of a conventional CF gradually decreased as the number of recommended products increased. As a result, we found that using search keyword data effectively represents customer preferences and might contribute to an improvement in conventional CF recommender systems.