• Title/Summary/Keyword: universal background model

Search Result 37, Processing Time 0.023 seconds

Fast Speaker Identification Using a Universal Background Model Clustering Method (Universal Background Model 클러스터링 방법을 이용한 고속 화자식별)

  • Park, Jumin;Suh, Youngjoo;Kim, Hoirin
    • The Journal of the Acoustical Society of Korea
    • /
    • v.33 no.3
    • /
    • pp.216-224
    • /
    • 2014
  • In this paper, we propose a new method to drastically reduce computational complexity in Gaussian Mixture Model (GMM)-based Speaker Identification (SI). Generally, GMM-based SI systems have very high computational complexity proportional to the length of the test utterance, the number of enrolled speakers, and the GMM size. These make the SI systems difficult to be used in various real applications in spite of their broad applicability. Thus, a trade-off between computational complexity and identification accuracy is considered as a primary issue for practical applications. In order to reduce computational complexity sharply with a little loss of accuracy, we introduce a method based on the Universal Background Model (UBM) clustering approach and then we show that it can be used successfully in real-time applications. In experiments with the proposed algorithm, we obtained a speed-up factor of 6 with a negligible loss of accuracy.

A PCA-based MFDWC Feature Parameter for Speaker Verification System (화자 검증 시스템을 위한 PCA 기반 MFDWC 특징 파라미터)

  • Hahm Seong-Jun;Jung Ho-Youl;Chung Hyun-Yeol
    • The Journal of the Acoustical Society of Korea
    • /
    • v.25 no.1
    • /
    • pp.36-42
    • /
    • 2006
  • A Principal component analysis (PCA)-based Mel-Frequency Discrete Wavelet Coefficients (MFDWC) feature Parameters for speaker verification system is Presented in this Paper In this method, we used the 1st-eigenvector obtained from PCA to calculate the energy of each node of level that was approximated by. met-scale. This eigenvector satisfies the constraint of general weighting function that the squared sum of each component of weighting function is unity and is considered to represent speaker's characteristic closely because the 1st-eigenvector of each speaker is fairly different from the others. For verification. we used Universal Background Model (UBM) approach that compares claimed speaker s model with UBM on frame-level. We performed experiments to test the effectiveness of PCA-based parameter and found that our Proposed Parameters could obtain improved average Performance of $0.80\%$compared to MFCC. $5.14\%$ to LPCC and 6.69 to existing MFDWC.

GMM-Based Maghreb Dialect Identification System

  • Nour-Eddine, Lachachi;Abdelkader, Adla
    • Journal of Information Processing Systems
    • /
    • v.11 no.1
    • /
    • pp.22-38
    • /
    • 2015
  • While Modern Standard Arabic is the formal spoken and written language of the Arab world; dialects are the major communication mode for everyday life. Therefore, identifying a speaker's dialect is critical in the Arabic-speaking world for speech processing tasks, such as automatic speech recognition or identification. In this paper, we examine two approaches that reduce the Universal Background Model (UBM) in the automatic dialect identification system across the five following Arabic Maghreb dialects: Moroccan, Tunisian, and 3 dialects of the western (Oranian), central (Algiersian), and eastern (Constantinian) regions of Algeria. We applied our approaches to the Maghreb dialect detection domain that contains a collection of 10-second utterances and we compared the performance precision gained against the dialect samples from a baseline GMM-UBM system and the ones from our own improved GMM-UBM system that uses a Reduced UBM algorithm. Our experiments show that our approaches significantly improve identification performance over purely acoustic features with an identification rate of 80.49%.

Noise Robust Speaker Verification Using Subband-Based Reliable Feature Selection (신뢰성 높은 서브밴드 특징벡터 선택을 이용한 잡음에 강인한 화자검증)

  • Kim, Sung-Tak;Ji, Mi-Kyong;Kim, Hoi-Rin
    • MALSORI
    • /
    • no.63
    • /
    • pp.125-137
    • /
    • 2007
  • Recently, many techniques have been proposed to improve the noise robustness for speaker verification. In this paper, we consider the feature recombination technique in multi-band approach. In the conventional feature recombination for speaker verification, to compute the likelihoods of speaker models or universal background model, whole feature components are used. This computation method is not effective in a view point of multi-band approach. To deal with non-effectiveness of the conventional feature recombination technique, we introduce a subband likelihood computation, and propose a modified feature recombination using subband likelihoods. In decision step of speaker verification system in noise environments, a few very low likelihood scores of a speaker model or universal background model cause speaker verification system to make wrong decision. To overcome this problem, a reliable feature selection method is proposed. The low likelihood scores of unreliable feature are substituted by likelihood scores of the adaptive noise model. In here, this adaptive noise model is estimated by maximum a posteriori adaptation technique using noise features directly obtained from noisy test speech. The proposed method using subband-based reliable feature selection obtains better performance than conventional feature recombination system. The error reduction rate is more than 31 % compared with the feature recombination-based speaker verification system.

  • PDF

Scream Sound Detection Based on Universal Background Model Under Various Sound Environments (다양한 소리 환경에서 UBM 기반의 비명 소리 검출)

  • Chung, Yong-Joo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.12 no.3
    • /
    • pp.485-492
    • /
    • 2017
  • GMM has been one of the most popular methods for scream sound detection. In the conventional GMM, the whole training data is divided into scream sound and non-scream sound, and the GMM is trained for each of them in the training process. Motivated by the idea that the process of scream sound detection is very similar to that of speaker recognition, the UBM which has been used quite successfully in speaker recognition, is proposed for use in scream sound detection in this study. We could find that UBM shows better performance than the traditional GMM from the experimental results.

Text Independent Speaker Verficiation Using Dominant State Information of HMM-UBM (HMM-UBM의 주 상태 정보를 이용한 음성 기반 문맥 독립 화자 검증)

  • Shon, Suwon;Rho, Jinsang;Kim, Sung Soo;Lee, Jae-Won;Ko, Hanseok
    • The Journal of the Acoustical Society of Korea
    • /
    • v.34 no.2
    • /
    • pp.171-176
    • /
    • 2015
  • We present a speaker verification method by extracting i-vectors based on dominant state information of Hidden Markov Model (HMM) - Universal Background Model (UBM). Ergodic HMM is used for estimating UBM so that various characteristic of individual speaker can be effectively classified. Unlike Gaussian Mixture Model(GMM)-UBM based speaker verification system, the proposed system obtains i-vectors corresponding to each HMM state. Among them, the i-vector for feature is selected by extracting it from the specific state containing dominant state information. Relevant experiments are conducted for validating the proposed system performance using the National Institute of Standards and Technology (NIST) 2008 Speaker Recognition Evaluation (SRE) database. As a result, 12 % improvement is attained in terms of equal error rate.

Comparison of User's Reaction Sound Recognition for Social TV (소셜 TV적용을 위한 사용자 반응 사운드 인식방식 비교)

  • Ryu, Sang-Hyeon;Kim, Hyoun-Gook
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2013.06a
    • /
    • pp.155-156
    • /
    • 2013
  • 소셜 TV 사용 시, 사용자들은 TV를 시청하면서 타 사용자와의 소통을 위해 리모컨을 이용해서 텍스트를 작성해야하는 불편함을 가지고 있다. 본 논문에서는 소셜 TV의 이러한 불편함을 해결하기 위해 사용자 반응 사운드를 자동으로 인식하여 상대방에게 이모티콘을 전달하기 위한 시스템을 제안하며, 사용자 반응 사운드 인식에 사용되는 분류방식들을 비교한다. 사용자 반응 사운드 인식을 위해 사용되는 분류 방식들 중에서, Gaussian Mixture Model(GMM), Gaussian Mixture Model - Universal Background Model(GMM-UBM), Hidden Markov Model(HMM), Support Vector Machine(SVM)의 성능을 비교하였다. 각 분류기의 성능을 비교하기 위하여 MFCC 특징값을 각 분류기에 적용하여 사용자 반응 사운드 인식에 가장 최적화된 분류기를 선택하였다.

  • PDF

Research of Gesture Recognition Technology Based on GMM and SVM Hybrid Model Using EPIC Sensor (EPIC 센서를 이용한 GMM, SVM 기반 동작인식기법에 관한 연구)

  • CHEN, CUI;Kim, Young-Chul
    • Proceedings of the Korea Contents Association Conference
    • /
    • 2016.05a
    • /
    • pp.11-12
    • /
    • 2016
  • SVM (Support Vector machine) is powerful machine-learning method, and obtains better performance than traditional methods in the applications of muti-dimension nonlinear pattern classification. For the case of SVM model training and low efficiency in large samples, this paper proposes a combination of statistical parameters of the GMM-UBM (Universal Background Model) model. It is very effective to solve the problem of the large sample for the SVM training. The experiment is carried on four special dynamic hand gestures using the EPIC sensors. And the results show that the improved dynamic hand gesture recognition system has a high recognition rate up to 96.75%.

  • PDF

Restructuring Primary Health Care Network to Maximize Utilization and Reduce Patient Out-of-pocket Expenses

  • Bardhan, Amit Kumar;Kumar, Kaushal
    • Asian Journal of Innovation and Policy
    • /
    • v.8 no.1
    • /
    • pp.122-140
    • /
    • 2019
  • Providing free primary care to everyone is an important goal pursued by many countries under universal health care programs. Countries like India need to efficiently utilize their limited capacities towards this purpose. Unfortunately, due to a variety of reasons, patients incur substantial travel and out-of-pocket expenses for getting primary care from publicly-funded facilities. We propose a set-covering optimization model to assist health policy-makers in managing existing capacity in a better way. Decision-making should consider upgrading centers with better potential to reduce patient expenses and reallocating capacities from less preferred facilities. A multinomial logit choice model is used to predict the preferences. In this article, a brief background and literature survey along with the mixed integer linear programming (MILP) optimization model are presented. The working of the model is illustrated with the help of numerical experiments.

Forensic Automatic Speaker Identification System for Korean Speakers (과학수사를 위한 한국인 음성 특화 자동화자식별시스템)

  • Kim, Kyung-Wha;So, Byung-Min;Yu, Ha-Jin
    • Phonetics and Speech Sciences
    • /
    • v.4 no.3
    • /
    • pp.95-101
    • /
    • 2012
  • In this paper, we introduce the automatic speaker identification system 'SPO(Supreme Prosecutors Office) Verifier'. SPO Verifier is a GMM(Gaussian mixture model)-UBM(universal background model) based automatic speaker recognition system and has been developed using Korean speakers' utterances. This system uses a channel compensation algorithm to compensate recording device characteristics. The system can give the users the ability to manage reference models with utterances from various environments to get more accurate recognition results. To evaluate the performance of SPO Verifier on Korean speakers, we compared this system with one of the most widely used commercial systems in the forensic field. The results showed that SPO Verifier shows lower EER(equal error rate) than that of the commercial system.