• Title/Summary/Keyword: univariate statistics

Search Result 169, Processing Time 0.033 seconds

Nonparametric Estimation of Bivariate Mean Residual Life Function under Univariate Censoring

  • Dong-Myung Jeong;Jae-Kee Song;Joong Kweon Sohn
    • Journal of the Korean Statistical Society
    • /
    • v.25 no.1
    • /
    • pp.133-144
    • /
    • 1996
  • We, in this paper, propose a nonparametric estimator of bivariate mean residual life function based on Lin and Ying's (1993) bivariate survival function estimator of paired failure times under univariate censoring and prove the uniform consistency and the weak convergence result of this estimator. Through Monte Carlo simulation, the performances of the proposed estimator are tabulated and are illustrated with the skin grafts data.

  • PDF

A Comparison Study of Multivariate Binary and Continuous Outcomes

  • Pak, Dae-Woo;Cho, Hyung-Jun
    • The Korean Journal of Applied Statistics
    • /
    • v.25 no.4
    • /
    • pp.605-612
    • /
    • 2012
  • Multivariate data are often generated with multiple outcomes in various fields. Multiple outcomes could be mixed as continuous and discrete. Because of their complexity, the data are often dealt with by separately applying regression analysis to each outcome even though they are associated the each other. This univariate approach results in the low efficiency of estimates for parameters. We study the efficiency gains of the multivariate approaches relative to the univariate approach with the mixed data that include continuous and binary outcomes. All approaches yield consistent estimates for parameters with complete data. By jointly estimating parameters using multivariate methods, it is generally possible to obtain more accurate estimates for parameters than by a univariate approach. The association between continuous and binary outcomes creates a gap in efficiency between multivariate and univariate approaches. We provide a guidance to analyze the mixed data.

Graphical Methods for Evaluating the Effect of Outliers in Univariate and Bivariate Data (일변량 및 이변량 자료에 대하여 특이값의 영향을 평가하기 위한 그래픽 방법)

  • Jang, Dae-Heung
    • Proceedings of the Korean Society for Quality Management Conference
    • /
    • 2006.11a
    • /
    • pp.221-226
    • /
    • 2006
  • We usually use two techniques(influence function and local influence) for detecting outliers. But, we cannot use these difficult techniques in elementary industrial statistics course for college students. We can use some simple graphical methods(box plot, dandelion seed plot, influence graph and cumulative deletion plot) for univariate and bivariate outlier detection and outlier effect in elementary industrial statistics course for college students.

  • PDF

Performance for simple combinations of univariate forecasting models (단변량 시계열 모형들의 단순 결합의 예측 성능)

  • Lee, Seonhong;Seong, Byeongchan
    • The Korean Journal of Applied Statistics
    • /
    • v.35 no.3
    • /
    • pp.385-393
    • /
    • 2022
  • In this paper, we consider univariate time series models that are well known in the field of forecasting and we study on forecasting performance for their simple combinations. The univariate time series models include exponential smoothing methods and ARIMA (autoregressive integrated moving average) models, their extended models, and non-seasonal and seasonal random walk models, which is frequently used as benchmark models for forecasting. The median and mean are simply used for the combination method, and the data set used for performance evaluation is M3-competition data composed of 3,003 various time series data. As results of evaluating the performance by sMAPE (symmetric mean absolute percentage error) and MASE (mean absolute scaled error), we assure that the simple combinations of the univariate models perform very well in the M3-competition dataset.

Performance Analysis of Volatility Models for Estimating Portfolio Value at Risk (포트폴리오 VaR 측정을 위한 변동성 모형의 성과분석)

  • Yeo, Sung Chil;Li, Zhaojing
    • The Korean Journal of Applied Statistics
    • /
    • v.28 no.3
    • /
    • pp.541-559
    • /
    • 2015
  • VaR is now widely used as an important tool to evaluate and manage financial risks. In particular, it is important to select an appropriate volatility model for the rate of return of financial assets. In this study, both univariate and multivariate models are considered to evaluate VaR of the portfolio composed of KOSPI, Hang-Seng, Nikkei indexes, and their performances are compared through back testing techniques. Overall, multivariate models are shown to be more appropriate than univariate models to estimate the portfolio VaR, in particular DCC and ADCC models are shown to be more superior than others.

A NOTE ON THE CONVERGENCE OF TRIVARIATE EXTREME ORDER STATISTICS AND EXTENSION

  • BARAKAT H. M.;NIGM E. M.;ASKAR M. M.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.247-259
    • /
    • 2005
  • Necessary and sufficient conditions, under which there exists (at least) a sequence of vectors of real numbers for which the distribution function (d.f.) of any vector of extreme order statistics converges to a non-degenerate limit, are derived. The interesting thing is that these conditions solely depend on the univariate marginals. Moreover, the limit splits into the product of the limit univariate marginals if all the bivariate marginals of the trivariate d.f., from which the sample is drawn, is of negative quadrant dependent random variables (r.v.'s). Finally, all these results are stated for the multivariate extremes with arbitrary dimensions.

A Study on Air Demand Forecasting Using Multivariate Time Series Models (다변량 시계열 모형을 이용한 항공 수요 예측 연구)

  • Hur, Nam-Kyun;Jung, Jae-Yoon;Kim, Sahm
    • The Korean Journal of Applied Statistics
    • /
    • v.22 no.5
    • /
    • pp.1007-1017
    • /
    • 2009
  • Forecasting for air demand such as passengers and freight has been one of the main interests for air industries. This research has mainly focus on the comparison the performance between the univariate seasonal ARIMA models and the multivariate time series models. In this paper, we used real data to predict demand on international passenger and freight. And multivariate time series models are better than the univariate models based on the accuracy criteria.

CHARACTERIZATIONS OF PARETO, WEIBULL AND POWER FUNCTION DISTRIBUTIONS BASED ON GENERALIZED ORDER STATISTICS

  • Ahsanullah, Mohammad;Hamedani, G.G.
    • Journal of the Chungcheong Mathematical Society
    • /
    • v.29 no.3
    • /
    • pp.385-396
    • /
    • 2016
  • Characterizations of probability distributions by different regression conditions on generalized order statistics has attracted the attention of many researchers. We present here, characterization of Pareto and Weibull distributions based on the conditional expectation of generalized order statistics extending the characterization results reported by Jin and Lee (2014). We also present a characterization of the power function distribution based on the conditional expectation of lower generalized order statistics.

Survival analysis of bank loan repayment rate for customers of Hawassa commercial bank of Ethiopaia

  • Kitabo, Cheru Atsmegiorgis;Kim, Jong Tae
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.6
    • /
    • pp.1591-1598
    • /
    • 2014
  • The reviews of the balance sheet of commercial banks showed that loan item constitutes the largest portion of bank's assets. Although the sector has highest rate of profit, it possesses the greatest risk. Identifying factors that can contribute in lifting-up the loan repayment rate of customers of Hawassa district commercial bank is the major goal of this study. A sample of 183 customers who took loan from October, 2005 to April, 2012 was taken from the bank record. Kaplan-Meier estimation method and univariate Cox proportional hazard model were applied to identify factors affecting bank loan repayment rate. The result from Kaplan-Meier survival estimation revealed that the loan repayment rate is significantly related with loan type, and previous loan experience, educational level and mode of repayment. The log-rank test indicates that the survival probability of loan customers is not statistically different in repaying the loan among groups classified by sex. Moreover, the univariate Cox proportional hazard model result portrayed that educational level, having previous loan experience, mode of repayment, collateral type and purpose of loan are significantly related with loan repayment rate of customers commercial bank. Hence, banks should design loan strategies giving special emphasis on the significant factors while they are giving loans to their customers.

Development of a Method for Detecting Unstable Behaviors in Flume Tests using a Univariate Statistical Approach

  • Kim, Seul-Bi;Seo, Yong-Seok;Kim, Hyeong-Sin;Chae, Byung-Gon;Choi, Jung-Hae;Kim, Ji-Soo
    • The Journal of Engineering Geology
    • /
    • v.24 no.2
    • /
    • pp.191-199
    • /
    • 2014
  • We describe a method for detecting slope instability in flume tests using pore pressure and water content data in conjunction with a statistical control chart analysis. Specifically, we conducted univariate statistical analysis on x-MR control chart data (pore pressure and water content) collected at several points along the flume slope, which we separated into three parts: upper, middle, and lower. To assess our results in the context of landslide forecasting and warning systems, we applied control limit lines at $1{\sigma}$, $2{\sigma}$, and $3{\sigma}$ levels of uncertainty. In doing so, we observed that dispersion time varies depending on the control limit line used. Moreover, the detection of instabilities is highly dependent on the position and type of sensor. Our findings indicate that different characteristics of the data on various factors predict slope failure differently and these characteristics can be identified by univariate statistical analysis. Therefore, we suggest that a univariate statistical approach is an effective method for the early detection of slope instability.