133

Journal of the Korean
Statistical Society
Vol. 25, No. 1, 1996

Nonparametric Estimation of Bivariate
Mean Residual Life Function under
Univariate Censoring!'

Dong-Myung Jeong, Jae-Kee Song and Joong Kweon Sohn!

Abstract

We, in this paper, propose a nonparametric estimator of bivari-
ate mean residual life function based on Lin and Ying’s(1993) bivari-
ate survival function estimator of paired failure times under univariate
censoring and prove the uniform consistency and the weak convergence
result of this estimator. Through Monte Carlo simulation, the perfor-
mances of the proposed estimator are tabulated and are illustrated
with the skin grafts data.
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1. INTRODUCTION

Let T = (T1,T») be a non-negative pair of random variables with joint
probability distribution function F on R? and let us define the bivariate
mean residual life(BVMRL) function or remaining life expectancy function
at t = (tl,tg) as

e(t) = E[T — t|T > t]

for all t € R? such that Pr[T > t] > 0. Note that the j-th component of
e(t), e;(t), is the mean of the remaining lifetime given survival up to time ¢
along the direction of the j-th axis. Hence e;(t) is obviously different from
the univariate j-th marginal mean residual life(MRL) function of the marginal
distribution of the joint distribution F. But if T has independent marginal
then e;(t) is the same as the marginal MRL function.

Arnold and Zahedi(1988) provided some general characterization prop-
erties of multivariate mean residual life(MVMRL) function and proved the
relationship between the MVMRL function and the hazard gradient. Nair
and Nair(1989) introduced a concept of BVMRL function and derived the
relationship between the reliability and the mean residual life function.

In the presence of censoring, nonparametric estimation problem of bi-
variate survival function has been studied by many authors including Camp-
bell(1981), Tsai, Leurgans and Crowley(1986), Dabrowska(1988) and Prentice
and Cai(1992).

In bivariate survival studies, if the two failure times are censored by a
single censoring variable then this censoring mechanism is called the univari-
ate censoring. Under univariate censoring, Lin and Ying(1993) developed a
very simple nonparametric estimator for the bivariate survival curve using
the natural representation of the bivariate survival function in terms of the
bivariate at-risk probability and the survival function of the censoring time.
They also provided the uniform consistency and the weak convergence to a
mean zero Gaussian process.

In Section 2, we propose an estimator of BVMRL function based on Lin
and Ying’s bivariate survival function estimator of paired failure times under
univariate censoring and prove the uniform consistency and the weak conver-
gence result of this estimator. In Section 3, we investigate the properties of
the proposed estimator via Monte Carlo simulation. Finally, an example is
illustrated with the skin grafts data in Section 4.
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2. ASYMPTOTIC PROPERTIES

Let (Tyi,T2:),i = 1,2,-- -, n be independent and identically distributed(i.i.d.)
pairs of random variables(r.v.’s) with joint survival function S(z,y) = Pr(T} >
z,Tp > y), and let C;,i = 1,2,---,n be i.i.d. r.v.’s with survival function
G(t) = Pr(C > t). Suppose that the two sequences {(T1;, T2:)}7_, and {C;}7_,
are independent. We will refer to the (T, T;)’s as pairs of lifetimes and to the
C;’s as censoring times. In the random univariate censorship model from the
right, the (T, T2) may be censored on the right by the single censoring variable
C, so that we only observe the random vectors (X;,Y;, 67,6¢),i = 1,2,---,n,
where X,' = (Tl,- A C,’), Yz = (TQ,’ A C,),(Sf = I(Th' S C,) and 53’ = I(Tgi S C,)
Here and in the sequel, I(A) denotes the indicator function of the event A,
a A b= min(a,b), and a V b = max(a, b).

From the fact that the observed pairs {(X;, Y:)}7, have the survival func-
tion S(z,y)G(z V y), it is natural to estimate the survival function S(z,y) by

n 'YL, I(Xi 2 e Y2 )

Sn(z,y) = »én(mVy) | (2.1)

where the numerator is the empirical estimator for S(z,y)G(zVy) and the de-
nominator is the product-limit estimator for G(-) (see Lin and Ying (1993)).
Note that when there is no censoring, the estimator (2.1) is reduced to the
usual empirical bivariate survival function. Now let 7 be a point such that
S(r,7)G(r) > 0. Then S,(z,y) is uniform consistent and has weak conver-
gence result, i.e., for (z,y) € [0,7]%,

Vi {8u(2,9) = S(@,9)} — Z(2,y), (22)
where Z(-,-) is a mean zero Gaussian process with covariance function
_ S(z1Vz2,u1 V)
G{(z1Vy1)A(z2Vy)}

(z1vVu1)A(22V32) dG(u)
~S(e1, )8 ) (1 PGV TS )

(for details, see Lin and Ying(1993)). Since the BVMRL function may be
written as

Cov{Z(z1,y1), Z (z2,92)}

{S(m’y)}—lfa:r S(u,y)du, if 1=1

“ENTN (s s, i i=2,
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we then propose an estimator &(z,y) by using S, (z,y)

{Sa(z, )} 1 X Sa(u,y)du, if i=1

V=N e [ Sy v, i =2, @3)

where X* = max(Xy, X,,---,X,) and Y* = max(¥;,Ys,---,Y,).
The following two theorems provide the uniform consistency and weak
convergence results for the first component of the proposed estimator (2.3).

Theorem 2.1. Suppose that /n f7. S(u,y)du =2 0. Then as n — oo,

sup |ei(z,y) — ei(z,y)| > 0.
(z,v)€0,7]?

Proof. For a fixed (z,y) € [0, 7],

*

2 (1 )/: §n(u,y)du—%/r;$‘(u,y)du
= (5.8} (5@ [ {8a(u,y) - S 1)} du

— {8.(2,9) — S(z,y }/ S(u,y)du — S(z, y)/ (u,y du’
< GBS} (56 0) [ 15(w) - S(u,v)ldu

+15a(2,9) - S@ )| [ S w)dutS@) [ Bawy du)

|e1(z,y) — er(z,y)| =

By combining the consistency result of S, (z,y) with partial integration, the
first and second terms of the right-hand side of the inequality converge to
zero in probability.

On the other hand, the main part of third term is rewritten as

v [ Sawy)du=va [ {Suwy) - S@w)ldut v [ Suy)du

So by the convergence result of S, (z,y) and the above assumption of this
theorem, the third term converges to zero in probability. Thus the result
follows.
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Theorem 2.2. Suppose that /n [g. S(u,y)du —» 0. Then as n — oo,

\/ﬁ{é\l(m’y) - el(m,y)} _d—) W1(113,y),

where W (-,-) is a mean zero Gaussian process and is given by

Wie,9) = (82,0} (S [ 2()du=2(a,9) [ Su,)av).

x

T

Proof. For a fixed (z,y) € [0, 7], we have

VREE) - o)} = V(5 (i,y) [ 8w n)au - 5—(1—1/—) [ sy)an)

= {§n(m,y>s<x,y)}-‘(3(x,y) [ VatSawy) - $(u,)} du
~ VS.(@,9) = S(.)} [ Su)du =SV [ Sy du),

Now let D([0,7]*) be the space of functions on the rectangle [0, 7] that
are right continuous and have left-hand limits. Let d be the Skorohod metric
on D([0,7]*) and let us define a map H : D(|0,7]?) — D([0,7]?), by having

H(Z(z,y)) = xy)/ Z(u,y)du—Z my)/ S(u,y)du

for Z € D([0,7]*) where the limiting distribution Z is defined in (2). Then
H is a continuous map with respect to d (see Yang (1977)). Thus by the
continuity theorem in Billingsley(1968) and the above assumption of this
theorem, the result follows.

Remark 1. The covariance function of the limit distribution W (-, -} defined
in Theorem 2.2 is given by, for 0 < z; < zy < 7,and 0 < y; < y2 <7,

Cov{Wi(z1,91), Wi(z2,32)} = {S(z1,51)S (22, 2)} 2
(S(ml,yl)S’(wz,yg) E[/; Z(u,y1) du /T: Z(u,yg)du]

z1

+ B{Z (w2 (e} [ S du [ S(,m) du

T2

= S(eny) [ Stum)du B|Z(awe) [ 2(u,) du]

z9 z1

= S@ow) [ S du B|Z@uw) [ 20 @),

x z2
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Remark 2. For the asymptotic properties of the second component of the
proposed estimator (3), it is analogous to the above Theorems 2.1 and 2.2,
with X~ replaced by Y* and S, (u,y) by S.(z,v).

3. SIMULATION STUDIES

Simulation studies were carried out to examine the properties of the pro-
posed estimator with various sample sizes, n=20, 50 and 100.

Three sets of 500 simulations were carried out. In each simulation, n pairs
of failure times with unit exponential marginal distributions were generated.
These values were then subject to be censored to the right by an independent
exponentially distributed random variate with hazard rate of 0.111 and 0.429.
Here the values of hazard rates were calculated to make censoring rate to be
10% and 30%, respectively.

In our simulations the pairs of failure times were, respectively, indepen-
dent and distributed according to the Gumbel(1960)’s bivariate exponential
distribution

S(m,y) = e-—(z+y){1 + 9(1 - e_z)(l - e‘y)}v
with #=0.25 and 0.50. Here 8 stands for the relationship between z and y.
That is,
4-p
(1-e2)(1—e )’
where p is a correlation coefficient of z and y. Thus the Gumbel model with
6—=0 simply means that two components are independent. In Gumbel model,

the pairs of failure times (z,y) were generated from uniform (0,1)-variates u;
and uy using the following transformation

(14a) = {(1+a)? —4a(l - ul)}%]
2a '

[ —

y=—log(l —uy), z= —logl

where a = 0(2uy - 1).

Simulation results are tabulated in Tables 3.1 to 3.3. In the tables, the
estimates and MSE’s of the proposed estimator are given at pairs of time
points where (z,y) take values (0.0,0.0), (0.2231,0.2231), (0.5108,0.5108),
(0.9163,0.9163) corresponding to maginal survival probabilities of 1, 0.8, 0.6
and 0.4.
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Table 3.1. Bivariate MRL function estimates and their MSE’s
in under independent exponential model.
(Censoring rate : 10%)

Sample | y \ = 0.000 0.223 0.510 0.916

(1.000, 1.000)° | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.000 | (0.996,0.990)" | (0.984, 1.003) | (0.987, 1.009) | (0.974, 1.000)
(0.057, 0.060)° | (0.069, 0.083) | (0.097, 0.124) | (0.171, 0.173)

(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.2231 | (1.004,0.989) | (0.992,1.007) | (1.002, 1.012) | (1.004, 0.996)

20 (0.074, 0.091) | (0.086, 0.129) | (0.130, 0.176) | (0.324, 0.242)
(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.5108 | (1.020,0.985) | (1.009, 1.003) | (1.019, 0.999) | (1.004, 0.966)
(0.108,0.174) | (0.127, 0.208) | (0.207, 0.264) | (0.394, 0.357)

(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.9163 | (1.009,0.987) | (0.993, 1.004) | (1.004, 1.011) | (0.953, 0.952)
(0.169, 0.301) | (0.225, 0.350) | (0.361, 0.468) | (0.561, 0.666)

(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.0000 | (1.001,1.003) | (0.998, 1.004) | (0.999, 1.001) | (1.006, 0.995)
(0.011,0.011) | (0.014, 0.014) | (0.019, 0.020) | (0.032, 0.031)

(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.2231 | (1.004,1.010) | (1.002, 1.012) | (1.002, 1.006) | (1.009, 0.995)

100 (0.014, 0.018) | (0.018,0.022) | (0.022, 0.028) | (0.040, 0.041)
(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.5108 | (0.997,1.009) | (1.009, 1.014) | (1.019, 1.009) | (1.008, 0.999)
(0.018, 0.030) | (0.127, 0.036) | (0.207, 0.047) | (0.053, 0.063)

(1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000) | (1.000, 1.000)

0.9163 | (0.994,1.009) | (0.989, 1.015) | (0.992, 1.013) | (0.999, 0.999)
(0.030, 0.055) | (0.038, 0.067) | (0.050, 0.085) | (0.090, 0.118)

a : the value of (e;(z,y), ea(z,y))
b : the value of (€;(z,y), &2(z,v))
¢ : the MSE of (¢;(z,y), &:(z,v))

In our simulation studies, we may see the following results: (1) In the
case of independent model, the true value of each component is always one
at all pairs of time points (z,y) because of the properties of exponential
distribution. The MSE’s of the proposed estimator are reduced as the sample
size increases and censoring rate decreases at each component. (2) For the
Gumbel model, the estimators of both component are over-estimated. As
the time point increases, the estimates of first component are decreased while
those of the second increased. The estimates of both component are increased
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as the censoring rate decreases and 6 increases. The MSE’s of the proposed
estimator are reduced as the sample size increases, # decreases and the amount
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of censoring decreases at each component.

Table 3.2 Bivariate MRL function estimates and their MSE’s in under
Gumbel bivariate exponential model with 8 = 0.25.
(Censoring rate : 10%)
Sample | y \ 0.000 0.223 0.510 0.916

(1.000, 1.000)* | (1.000, 1.025) | (1.000, 1.050) | (1.000, 1.075)

0.0000 | (1.108, 1.026)* | (1.088, 1.110) | (1.060, 1.201) | (1.031, 1.292)

(0.069, 0.060)° | (0.078, 0.086) | (0.100, 0.140) | (0.166, 0.247)

(1.025, 1.000) | (1.019, 1.019) | (1.014, 1.039) | (1.009, 1.058)

0.2231 | (1.163,1.059) | (1.127,1.136) | (1.087, 1.223) | (1.042, 1.301)

20 (0.093,0.118) | (0.100, 0.146) | (0.121, 0.203) | (0.222, 0.309)
(1.050, 1.000) | (1.039, 1.014) | (1.028, 1.022) | (1.018, 1.042)

0.5108 | (1.240,1.078) | (1.184, 1.149) | (1.127, 1.230) | (1.083, 1.304)

(0.141, 0.198) | (0.146, 0.238) | (0.168, 0.302) | (0.298, 0.427)

(1.075, 1.000) | (1.058, 1.009) | (1.042, 1.018) | (1.027, 1.027)

0.9163 | (1.346,1.127) | (1.248, 1.174) | (1.163, 1.251) | (1.085, 1.327)
(0.266, 0.443) | (0.242, 0.469) | (0.271, 0.563) | (0.396, 0.784)

(1.000, 1.000) | (1.000, 1.025) | (1.000, 1.050) | (1.000, 1.075)

0.0000 | (1.116,1.011) | (1.097, 1.091) | (1.070, 1.174) | (1.043, 1.262)

(0.039, 0.023) | (0.040, 0.034) | (0.045, 0.059) | (0.067, 0.109)

(1.025, 1.000) | (1.019, 1.019) | (1.014, 1.039) | (1.009, 1.058)

0.2231 | (1.173,1.030) | (1.142,1.107) | (1.103, 1.184) | (1.064, 1.263)

50 (0.058, 0.044) | (0.057, 0.059) | (0.060, 0.088) | (0.085, 0.145)
(1.050, 1.000) | (1.039, 1.014) | (1.028, 1.022) | (1.018, 1.042)

0.5108 | (1.242,1.093) | (1.187,1.162) | (1.133, 1.237) | (1.074, 1.304)
(0.087, 0.086) | (0.078, 0.109) | (0.080, 0.151) | (0.107, 0.214)

(1.075, 1.000) | (1.058, 1.009) | (1.042, 1.018) | (1.027, 1.027)

0.9163 | (1.333,1.126) | (1.241, 1.181) | (1.167, 1.252) | (1.097, 1.325)
(0.142, 0.135) | (0.116, 0.157) | (0.119, 0.209) | (0.144, 0.305)

a : the value of (el(m,y),62(w,y))
b : the value of (€;(z,¥), € (z,v))
c : the MSE of (gi(z,y), é2(z, ¥))




Estimation of Bivariate Mean Residual Life Function

Table 3.3 Bivariate MRL function estimates and their MSE’s in under
Gumbel bivariate exponential model with 8 = 0.50.
(Censoring rate : 30%)
Sample | y \ z 0.000 0.223 0.510 0.916

(1.000, 1.000)° | (1.000, 1.050) | (1.000, 1.100) | (1.000, 1.150)

0.000 | (1.187, 1.008)* | (1.182, 1.118) | (1.141, 1.237) | (1.078, 1.376)

(0.079, 0.032)° | (0.091, 0.050) | (0.095, 0.086) | (0.118, 0.173)

(1.050, 1.000) | (1.039, 1.039) | (1.028, 1.076) | (1.018, 1.113)

0.223 | (1.288, 1.024) | (1.263, 1.125) | (1.201, 1.230) | (1.113, 1.342)

50 (0.121, 0.055) | (0.130, 0.073) | (0.126, 0.113) | (0.142, 0.194)

(1.100, 1.000) | (1.076, 1.028) | (1.055, 1.055) | (1.035, 1.080)

0.510 | (1.417,1.101) | (1.344, 1.177) | (1.262, 1.279) | (1.145, 1.367)

(0.193, 0.095) | (0.177, 0.115) | (0.172, 0.169) | (0.181, 0.259)

(1.150, 1.000) | (1.113, 1.018) | (1.080, 1.035) | (1.050, 1.050)

0.916 | (1.572, 1.154) | (1.427, 1.194) | (1.295, 1.273) | (1.178, 1.384)

(0.327, 0.188) | (0.257, 0.210) | (0.232, 0.259) | (0.265, 0.398)

(1.000, 1.000) | (1.000, 1.050) | (1.000, 1.100) | (1.000, 1.150)

0.000 | (1.186, 1.003) | (1.180, 1.111) | (1.145, 1.230) | (1.097, 1.376)

(0.057, 0.019) (0.061, 0.030) | (0.060, 0.056) | (0.075, 0.120)

(1.050, 1.000) (1.039, 1.039) | (1.028, 1.076) | (1.018,1.113)

0.223 | (1.285,1.042) | (1.256, 1.139) | (1.199, 1.246) | (1.129, 1.370)

100 (0.088, 0.032) | (0.085, 0.047) | (0.078, 0.080) | (0.089, 0.148)

(1.100, 1.000) | (1.076, 1.028) | (1.055, 1.055) | (1.035, 1.080)

0.510 | (1.404, 1.091) | (1.333, 1.168) | (1.261, 1.274) | (1.168, 1.385)

(0.138, 0.058) | (0.119, 0.076) | (0.111, 0.122) | (0.122, 0.206)

(1.150, 1.000) | (1.113, 1.018) | (1.080, 1.035) | (1.050, 1.050)

0.916 | (1.572, 1.157) (1.437,1.202) | (1.312, 1.285) | (1.211, 1.412)

(0.259, 0.131) | (0.195, 0.147) | (0.165, 0.195) | (0.182, 0.317)

a : the value of (ey(z,y), e2(z,y))
b : the value of (¢,(z,y), e2(z,y))
¢ : the MSE of (¢1(z, ), é2(z,y))

As an example, let us consider the well-known matched pairs data of Holt
and Prentice(1974), which consist of survival times, in days, of closely and
poorly matched skin grafts on the same burned patient. With the minor
modifications made by Woolson and Lachenbruch(1980) these data are re-
produced in Table 4.1. There were only 11 patients, the survival times of two

4. AN ILLUSTRATION

closely matched grafts being censored.
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Table 4.1. Days of survival of skin grafts on burn patients

Patient, 2 1 2 3 4 5 6 7 8 9 10 11
Survival of close match, X; | 37 19 57* 93 16 22 20 18 63 29 60*
Survival of poor match, Y; |29 13 15 26 11 17 26 21 43 15 40

* indicates censored

Table 4.2 displays the estimates of each component at all observed failure
time points for the skin graft data. For example, €(29, 29) = (26.0, 8.3). This
means that the mean residual life time of the first component given both
skin grafts survive beyond 29 days is 26.0 and those of the second component
is 8.3. Thus the mean residual life time of closely matched skin graft is
longer than those of poorly matched skin graft in this case. On the other
hand, the univariate marginal MRL function estimates of each component are
ex(29) = 40.8 and ey (29) = 12.5, respectively. Thus the BVMRL function
estimates are smaller than the univariate marginal MRL function estimates.
In general, if two components are dependent then it is more useful using the
BVMRL function rather than the univariate marginal MRL function.

Table 4.2. Estimates of the bivariate MRL functions for skin grafts data

y\z| 16 18 19 | 20 | 22 | 29 | 37 | 57 | 60 | 63
11 [ 27.0*° [ 277|298 325351340328 |21.0]|18.0 | 15.0
12.3° | 13.5 | 139|154 | 154 | 17.0 | 19.6 | 20.0 | 25.3 | 23.5
13 297 | 27.7129.8 1325|351 |34.0|32.8|21.0|18.0 | 15.0
11.5 | 11.5 {11.9 | 134 | 13.4 | 15.0 | 17.6 | 18.0 | 23.3 | 21.5
15 327 1307 1335325351 340328210180 | 15.0
10.8 [ 10.8 114|114 | 114 | 13.0| 15.6 | 16.0 | 21.3 | 19.5
17 34.3 | 32.3 | 36.7 | 35.7 | 40.8 | 44.0 | 36.0 | 28.0 | 18.0 | 15.0
11.9 | 11.9 1132 | 13.2 | 14.0 | 175 | 175} 19.3 | 19.3 | 17.5
21 39.0 | 37.0|43.4|42.4|51.0 | 44.0|36.0 | 28.0 | 18.0 | 15.0
98 | 98 | 11.8{11.8 135135135 (153|153 135
26 464 | 444|434 |424)51.0|44.0|36.0 | 28.0| 18.0 | 15.0
68 | 68| 68 | 68|85 | 85| 85 103|103 | 85
29 39.0 |37.0(36.0|350|330(260|180| 7.0 | 23 | .0
83 | 83 |83 |83 1]83 |83 |83 |125|125|14.0
40 48.0 | 46.0 | 45.0 | 44.0 [ 42.0 | 35.0{27.0| 7.0 | 23 | .0
1.5 | 1.5 |15 | 15|15 |15 15 |15 ] 15| 30
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a : estimate of the first component
b : estimate of the second component
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