• Title/Summary/Keyword: unit hydrograph

Search Result 211, Processing Time 0.026 seconds

Development of Synthetic Unit Hydrograph for Estimation of Runoff in Ungauged Watershed (미계측 유역의 유출량 산정을 위한 합성단위도 개발)

  • Choi, Yong Joon;Kim, Joo Cheol;Jeong, Dong Kug
    • Journal of Korean Society on Water Environment
    • /
    • v.26 no.3
    • /
    • pp.532-539
    • /
    • 2010
  • The synthetic unit hydrograph is developed and verified using Nash model and characteristic velocities considering geomorphological dispersion in this present study. Application watersheds are selected 5 subwatersheds of Bocheong basin. The mean and variance of hillslope and stream path length are estimated in each watershed with GIS. Characteristic velocities are calculated using estimated path lengths and moment characteristics of rainfall-runoff data. Characteristic velocities of random devised 7 ungauged watersheds are estimated through regional analysis of chracteristic velocities in guaged watershed. And Nash model parameters and IUH are derived using characteristic velocities and path length in the gauged and ungauged watershed. The result to compare of IUH about gauged watershed and random devised ungauged watershed in application watershed presents coherently hydrologic response characteristics that peak discharge is reduced and peak time is extended. In conclusion, Developed synthetic unit hydrograph in this study expects that it is useful method to estimate runoff discharge for managing of water pollution in ungauged watershed.

Verification about Threshold Discharge Computation using GIUH on ungauged small basin (지형학적순간단위도를 이용한 미계측 소유역의 한계유출량 산정 검증)

  • Choi Hyun;Lee Sang-Jin
    • Spatial Information Research
    • /
    • v.14 no.1 s.36
    • /
    • pp.15-27
    • /
    • 2006
  • This paper is about the threshold discharge computation using GIUH(Geomorphoclimatic Instantaneous Unit Hydrograph) on ungauged small basin. GIUH is one of the possible approaches to predicting the hydrograph characteristics. This study is calculated the various ways which are hydrologic characteristics, bankfull flows, unit peak flows(the Clark, the Nakayasu and the S.C.S) as well as threshold runoffs on about $5km^2$ scale at Kyungbuk gampo in subbasin. We are estimated propriety that peak discharge calculated the GIUH from acquiring data by GIS(Geographic Information System) compared to observed peak discharge. And, the threshold discharge was calculated by NRCS(Natural Resources Conservation Service) for a flash flood standard rainfall.

  • PDF

Hydrological Consequences of Converting Forestland to Coffee Plantations and Other Agriculture Crops on Sumber Jaya Watershed, West Lampung, Indonesia

  • Manik, Tumiar Katarina;Sidle, Roy Carl
    • Journal of Forest and Environmental Science
    • /
    • v.34 no.4
    • /
    • pp.293-303
    • /
    • 2018
  • Sumber Jaya (54,194 hectares) is a district in West Lampung, Indonesia, located at the upper part of Tulang Bawang watershed. This watershed is one major water resource for Lampung Province, but has become a focal point of discussion because of the widespread conversion of forestland to coffee plantations and human settlements which lead to environmental and hydrological problems. This research aimed to evaluate Sumber Jaya watershed affecting by rapid land use change using hydrological methods as a base for watershed management. Nested catchment structure consisted of eight sub-catchments was employed in this research to assess scaling issues of land use change impacts on rainfall-runoff connections. Six tipping bucket rain gages were installed on the hill slopes of each sub-catchment and Parshall flumes were installed at the outlets of each sub-catchment to monitor stream flow. First, unit hydrograph that expressed the relationship of rainfall and runoff was computed using IHACRES model. Second, unit hydrograph was also constructed from observations of input and response during several significant storms with approximately equal duration. The result showed that most of the storm flow from these catchments consisted of slow flow. A maximum of about 50% of the effective rainfall became quick flow, and only less than 10% of remaining effective rainfall which was routed as slow flow contributed to hydrograph peaks; the rest was stored. Also, comparing peak responses and recession rates on the hydrograph, storm flow discharge was generally increased slowly on the rising limb and decreased rapidly on the falling limb. These responses indicated the soils in these catchments were still able to hold and store rain water.

Runoff Analysis of a Linear Reservoir Model by the Geomorphologic Response Characteristics (지형학적 수문응답특성에 의한 선형저수지 모델 해석)

  • 조홍제
    • Water for future
    • /
    • v.20 no.2
    • /
    • pp.117-126
    • /
    • 1987
  • A Synthetic unit hydrograph method was suggested for the representation of a direct runoff hydrograph with empirical geomorphologic laws and geomorphologic parameters by applying geomorphologic instantaneous unit hydrograph theory and Rossois results of application of GIUH theory to the Nash Model which is a linear reservoir model. The shape parameter m and scale parameter k can be derived by the Horton's empirical geomorphologic laws $R_A,R_B,R_L$ when ordered according to Strahler's ordering Scheme, main stream length and using the maximum velocity for the dynamic characteristics of a river basin, The derived response function was tested on some observed flood datas and showed promising. For the determination of the shape parameter m, eq. (16) was showed applying and m showed a good regression with the size of basin area.

  • PDF

Nonlinear runoff during extreme storms in the Seolma-Cheon watershed

  • Kjeldsen, Thomas Rodding;Kim, Hyeonjun;Jang, Cheolhee;Lee, Hyosang
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.235-235
    • /
    • 2015
  • This study investigates the impact of event characteristics on runoff dynamics during extreme flood events observed in a $8.5km^2$ experimental watershed located in South Korea. The 37 most extreme flood events with event rainfall in excess of 50 mm were analysed using an event-based rainfall-runoff model; the Revitalised Flood Hydrograph (ReFH) routinely used for design flood estimation in the United Kingdom. The ReFH model was fitted to each event in turn, and links were investigated between each of the two model parameters controlling runoff production and response time, respectively, and event characteristics such as rainfall depth, duration, intensity and also antecedent soil moisture. The results show that the structure of the ReFH model can effectively accommodate any nonlinearity in runoff production, but that the linear unit hydrograph fails to adequately represent a reduction in watershed response time observed for the more extreme events. By linking the unit hydrograph shape directly to rainfall depth, the consequence of the observed nonlinearity in response time is to increase design peak flow by between 50% for a 10 year return period, and up to 80% when considering the probable maximum flood (PMF).

  • PDF

Optimization of Stream Gauge Network Using the Entropy Theory (엔트로피 이론을 이용한 수위관측망의 최적화)

  • Yoo, Chul-Sang;Kim, In-Bae
    • Journal of Korea Water Resources Association
    • /
    • v.36 no.2
    • /
    • pp.161-172
    • /
    • 2003
  • This study has evaluated the stream gauge network with the main emphasis on if the current stream gauge network can catch the runoff characteristics of the basin. As the evaluation of the stream gauge network in this study does not consider a special purpose of a stream gauge, nor the effect from a hydraulic structure, it becomes an optimization of current stream gauge network under the condition that each stream gauge measures the natural runoff volume. This study has been applied to the Nam-Han River Basin for the optimization of total 31 stream gauge stations using the entropy concept. Summarizing the results are as follows. (1) The unit hydrograph representing the basin response from rainfall can be transferred into a probability density function for the application of the entropy concept to optimize the stream gauge network. (2) Accurate derivation of unit hydrographs representing stream gauge sites was found the most important part for the evaluation of stream gauge network, which was assured in this research by comparing the measured and derived unit hydrographs. (3) The Nam-Han River Basin was found to need at least 28 stream gauge stations, which was derived by considering both the shape of the unit hydrograph and the runoff volume. If considering only the shape of the unit hydrograph, the number of stream gauges required decreases to 23.

A Study on Rainfall-Runoff Analysis by Geomorphological Instantaneous Unit Hydrograph (GIUH) (지형학적 순간단위도(GIUH)에 의한 강우-유출해석)

  • Choi, Hung-Sik;Park, Chung-Soo;Moon, Hyung-Geun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.1 s.20
    • /
    • pp.49-58
    • /
    • 2006
  • Rainfall-runoff characteristics are analysed based on the geomorphological instantaneous unit hydrograph(GIUH) derived by geomorphological parameters using geographical information system in watershed ungaged or deficient of field data. Observed data of Seom river experiment watershed at upstream of Hoengseong dam and variable slope method for hydrograph separating of direct non are used. The 4th stream order of Seom river experimental watershed is developed with a regular correlation referred to the Horton-Strahler's law of stream order. The characteristic velocity to determine shape parameter of GIUH is 1.0m/s and its equation is modified for accurate results. Hydrograph at the outlet of 4th stream order of Maeil gage station and at the outlets of 3rd stream order of Sogun and Nonggeori gage stations show a little differences in falling limb of hydrograph but agree well to the observed data in general. The results by hydrological routing with HEC-HMS to the outlet of 4th stream order of Maeil gage station which the hydrograph by GIUH obtained at Sogun and Nonggeori gage stations of 3rd stream oder are applied as upstream inputs give better agreement with observed data than those by hydrograph by GIUH obtained at Maeil gage station of 4th stream order. In general, the rainfall-runoff by GIUH has applicability to the watershed routing of ungaged project regions.