• Title/Summary/Keyword: unit content of binder

Search Result 55, Processing Time 0.029 seconds

Proposals for Revision of Lightweight Aggregate Concrete Specifications Based on In-situ Quality Control on Concrete (현장 품질관리를 고려한 경량골재 콘크리트의 시방서 개정안에 대한 고찰)

  • Lee, Kyung-Ho;Yang, Keun-Hyeok
    • Journal of the Korea Institute of Building Construction
    • /
    • v.18 no.3
    • /
    • pp.211-218
    • /
    • 2018
  • This study examined the reliability and revision necessity of concrete standard specifications based on the comparisons with test data obtained by using domestic artificial lightweight aggregates and the contents specified in different foreign specifications including ACI 211.2, ACI 213, ACI 301, JASS 5 and CEB-FIP. To achieve the continuous particle distribution of domestic fine lightweight aggregates, the partial addition of natural sand with the maximum size of 2.5mm was required. To control the segregation and excessive bleeding in the fresh lightweight concrete, the current limitations on the water-to-binder ratio and unit water content need to be modified using lower values. In particular, a rational mixture proportion approach of lightweight concrete needs to be established for the targeted requirements of initial slump, 28-day compressive strength, air content and dry unit weight. Ultimately, significant revision of the concrete standard specifications is required considering the characteristics of domestic artificial lightweight aggregates.

Differences among Major Rice Cultivars in Tensile Strength and Shattering of Grains during Ripening and Field Loss of Grains (벼알의 인장강도 및 탈립성의 등숙중 변화와 품종간 차이 및 포장손실과의 관계)

  • Y. W. Kwon;J. C. Shin;C. J. Chung
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.27 no.1
    • /
    • pp.1-10
    • /
    • 1982
  • Degree of grain shattering which is of varietal character is an important determinant for the magnitude of field loss of grains during harvest and threshing. Seven Indica \times Japonica progeny varieties and four Japonica varieties were subjected to measurements of tensile strength of grains, degree of grain shattering when panicles were dropped at 1.5m above concrete floor, and moisture content of grains (wet basis) during a period 35 to 63 days after heading. In addition, two varieties were tested for the relation of tensile strength of grains to the magnitude of field loss of grains in actual binder harvest. The 11 varieties differed conspicuously in tensile strength of grains and the degree of grain shattering: the weakest average tensile strength of grains of a variety was about 90g and the strongest about 250g with varying standard deviation of 30 to 60g. Three Indica \times Japonica varieties and one Japonica variety shattered I to 30% of the grains under the falling test. The threshold tensile strength of grains allowing grain shattering was estimated to be 180g on average for a sampling unit of 10 panicles, but only the grains having tensile strength weaker than 98g within the samples shattered. A decrease in average tensile strength by 10g below the threshold value corresponded to an increase of 3 to 5% in grain shattering. Most varieties did not change appreciably the tensile strength of grains and degree of grain shattering with delay in time of harvest and showed a negative correlation between the tensile strength and the moisture content of grains. The average tensile strength of grains was negatively correlated linearly with field loss in binder harvest. The average tensile strength for zero field loss in binder harvest was estimated to be 174g and a decrease in the average tensile strength by 10g corresponded to an increase of 40kg per hectare in field loss of grains. Instead of the average tensile strength of grains, the percentage of grains having tensile strength weaker than 100g is recommended as a criterion for the estimation of field loss of grains during harvesting operations as well as a basis of variety classification for grain shattering, since the standard deviation of tensile strength of grains varies much with variety and time of harvest, and individual grains having tensile strength stronger than 98 did not shatter practically.

  • PDF

Theoretical Analysis of Critical Chloride Content in (Non)Carbonated Concrete Based on Characteristics of Hydration of Cement (시멘트 수화 특성 및 탄산화를 고려한 콘크리트의 임계 염소이온량에 대한 해석 기법)

  • Yoon, In-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.19 no.3
    • /
    • pp.367-375
    • /
    • 2007
  • Critical chloride content for corrosion initiation is a crucial parameter in determining the durability and integrity of reinforced concrete structures, however, the value is still ambiguous. Most of the studies reporting critical threshold chloride content have involved the experimental measurement of the average amount of the total chloride content at arbitrary time. The majority of these researches have not dealt with this issue combined with carbonation of concrete, although carbonation can significantly impact on critical threshold chloride content. Furthermore, the studies have tried to define the critical chloride content within the scope of their experimental concrete mix proportion at arbitrary time. However, critical chloride content for corrosion initiation is known to be affected by a lot of factors including cement content, type of binder, chloride binding, concentration of hydroxyl ions, and so on. It is necessary to define the unified formulation to express the critical chloride content for various mix proportions of concrete. The purpose of this study is to establish an analytical formulation of the critical chloride content of concrete. In this formulation, affecting factors, such as mix proportion, environment, chemical evolution of pore solution with elapsed time, carbonation of concrete and so on are taken into account. Based on the Gouda's experimental results, critical chloride content is defined as a function of $[Cl^-]$ vs. $[OH^-]$ in pore solution. This is expressed as free chloride content with mass unit to consider time evolution of $[OH^-]$ content in pore solution using the numerical simulation programme of cementitious materials, HYMOSTRUC. The result was compared with other experimental studies and various codes. It is believed that the approach suggested in this study can provide a good solution to determine the reasonable critical chloride content with original source of chloride ions, for example, marine sand at initial time, and sea water penetration later on.

Increasing the Strength with Earth and Soil through Optimum Micro-filler Effect and Lime Composite Addition (흙과 모래의 최밀충전효과와 석회복합체의 첨가에 따른 강도 증진)

  • Hwang, Hey-Zoo;Roh, Tae-Hak;Kang, Nam-Yi
    • KIEAE Journal
    • /
    • v.11 no.4
    • /
    • pp.95-101
    • /
    • 2011
  • Earth has been used as a building material not only our country but also many foreign countries in the world. In foreign countries, we can often find the high-storied earthen houses which have been maintained for over several hundred years, which means the fact that earth differs in durability according to the methods of utilizing earth. So, the purpose of this study is to progress the fundamental research for utilizing earth as a wall material. Also, the another purpose of this study is to utilize the optimum micro-filler effect which adjusts the grain size of earth and the lime composite which promotes chemical combining power, and so examine whether earth material ensures its high compressive strength. This study applied both of rammed earth method and pour earth method among earth architecture methods. This study investigated compressive strength, slump, and air content according to unit binder weight. On the basis of such experimental results, this study derived the following conclusions. 1) Optimum micro-filler mixtures reduce a lot of fine particles contained in earth. If optimum micro-filler mixtures are used as aggregates, they develop lower W/B and relatively higher strength than general earth. 2) In this study, which uses optimum micro-filler earth mixtures and lime composite, rammed earth method develops 29MPa and pour earth method develops 28MPa in 28 days compressive strength. Such strengths can be utilized in building walls.

An Experimental Study on the Influence of High Fineness Fly Ash and Water-Binder Ratio on Properties of Concrete (콘크리트 특성에 미치는 고분말도 플라이애쉬의 치환율 및 물-결합재비 영향에 관한 실험적 연구)

  • Lee, Sang-Soo;Song, Ha-Young;Lee, Seung-Min
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.1
    • /
    • pp.29-35
    • /
    • 2009
  • Recently, the press and institute recognized fly ash as it had excellent performance. Its research and applications are on the rise largely as a substitute for cement. On the contrary, it is in a situation that the regulation of high fineness fly ash remains at a low level. As for the fly ash in $3,000{\sim}4,500\;cm^2/g$ class fineness regulated in KS L 5405, it is used by substituting it around the unit weight of cement 20%. Accordingly, the regulation in upper classification is in a situation of being insufficient. Therefore, this study aimed to establish 4000, 6000, and 8000 class of fineness of fly ash and three levels of substitute like 15%, 30%, and 45% in order to analyze the substitute and effect of water-binder ratio for fly ash that affected the properties of ternary system concrete. As a result of experiment by planning water-binder ratio for two levels like 40% and 50%, the more replacement ratio and fineness of fly ash increased in the performance not hardened, the more the fluidity increased. This study has found out that the air content decreased, and that there was setting acceleration and it decreased the heat of hydration. In addition, as for the strength properties in a state of performance hardened concrete, the more the replacement ratio and the ratio of water-binding materials increased, the more it had a tendency of being decreased.

Optimum Mix Proportions of High Fluidity Antiwashout Underwater Concrete Using Ground Granulated Blast Furnace Slag (고로슬래그 미분말을 사용한 고유동 수중불분리성 콘크리트의 최적배합비 도출)

  • Kim, Sung-Wook;Park, Jung-Jun;Bae, Su-Ho;Park, Jae-Im
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.8
    • /
    • pp.3704-3712
    • /
    • 2012
  • Recently, antiwashout underwater concrete has been increasingly used for marine foundations of long span bridges. However, to shorten the construction period of antiwashout underwater concrete used in marine foundations, high fluidity antiwashout underwater concrete should be manufactured largely improving fluidity than the previous one. Thus, the objective of this experimental research is to suggest optimum mix proportions of high fluidity antiwashout underwater concrete. For this purpose, concrete specimens containing ground granulated blast furnace slag were manufactured according to the dosage of antiwashout admixture for unit binder contents of 550 and 600kg/$m^3$, respectively. And then, their quality performances such as slump flow, setting time, underwater segregation resistance, and ratio of compressive strength were evaluated according to the related specification of Korea Concrete Institute. It was observed from the test results that the minimum dosage of antiwashout admixture was necessary to satisfy the related specification.

Feasibility Study on CLSM for Emergency Recovery of Landfill Bottom Ash (매립장 석탄회의 긴급복구용 CLSM으로 활용 가능성)

  • Ha-Seog Kim;Ki-Suk Kim
    • Land and Housing Review
    • /
    • v.14 no.2
    • /
    • pp.137-145
    • /
    • 2023
  • In this study, the characteristics such as flowability, bleeding rate, and strength of the CLSM (Controlled Low Strength Material) according to physical properties such as particle size distribution and particulate content of the pond ash were investigated as part of the practical development of technology for CLSM using pond ash. As a result of analyzing the properties of the collected pond ash, it was found that the density and particle size distribution characteristics were different. And that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for four hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it was determined that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.

Evaluation of Healing Properties of Asphalt Mixtures (아스팔트 혼합물의 손상회복 특성 평가)

  • Kim, Boo-Il
    • International Journal of Highway Engineering
    • /
    • v.7 no.2 s.24
    • /
    • pp.69-76
    • /
    • 2005
  • While the repeated traffic loading accumulates the damage of asphalt pavement, the damage has being healed during rest periods. And then, this healing enhances the fatigue life of asphalt pavement. A method was developed to determine the healing rate of asphalt mixture in terms of recovered dissipated creep strain energy (DCSE) per unit time, and the healing properties of four different asphalt mixtures were evaluated. The test procedure consists of repeated loading test and periodical resilient modulus tests. A normalized healing rate in terms of $DCSE/DCSE_{applied}$ was defined to evaluate the healing properties independently of the amount of damage incurred in the mixture. From the test results, it was concluded that the healing rates of asphalt mixtures were increased exponentially as the temperature was increased and more affected by the structural characteristics of mixture such as asphalt content than the binder characteristics such as the polymer modification.

  • PDF

A Study on the Properties of High Performance Concrete Using CSA Expansive Additives and Inorganic Admixtures (CSA계 팽창재 및 무기질 혼화재를 이용한 고성능 콘크리트의 특성에 관한 연구)

  • Han, Cheon-Goo;Bahn, Ho-Yong;Jun, Byung-Chea;Hong, Sang-Hee
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.141-148
    • /
    • 1999
  • Recently, high performance concrete developed has a good quality at fresh and hardened state, but high binder contents results in spending much money on manufacturing and many cracks by drying and autogenous shrinkage, Therefore, in this paper, not only prevention of cracks caused by drying and autogenous shrinkage, but improvement of quality and accomplishment of economy by applying F.A(fly ash), S.F(silica fume) and CSA(calcium sulfa aluminate) expansive additives as an inorganic admixtures in W/B 35% are discussed. According to the experimental results, when 5% of CSA expansive additives and 15:5(F.A:S.F)are replaced at unit cement content, high performance concrete with both good fluidity at fresh state and high compressive strength, compensation of drying and autogenous shrinkage at hardened state are accomplished.

Possibility of Using Landfill Coal Ash as CLSM Material for Emergency Restoration of Ground and Road Joint Parts (지반 및 도로 공동부의 긴급복구용 CLSM 재료로 매립 석탄저회 활용 가능성)

  • Jin-Man Kim;Sang-Chul Shin;Kyoung-Nam Min;Ha-Seog Kim
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.11 no.1
    • /
    • pp.55-61
    • /
    • 2023
  • This study aims to develop CLSM fill material for emergency restoration using landfill coal ash. As a result of examining physical properties such as particle size distribution and fines content of landfill coal ash, bottom ash, fly ash, and general soil were mixed, and SP was found to have a density of 2.03 and a residual particle pass rate of 7.8 %. CLSM materials that secure fluidity in unit quantities without using chemical admixtures such as glidants and water reducing agents have a high risk of material separation due to bleeding. As a result of this experiment, it was found that the bleeding ratio did not satisfy the standard in the case of the specimen with a large amount of fly ash and a lot of addition of mixing water. As a result of the compressive strength test, the strength development of 0.5 MPa or more for 4 hours was found to be satisfactory for the specimens using hemihydrate gypsum with a unit binder amount of 200 or more, and the remaining gypsum showed poor strength development. Although it is judged that landfill coal ash can be used as a CLSM material, it is necessary to identify and apply the physical and chemical characteristics of coal ash buried in the ash treatment plant of each power generation company.