• Title/Summary/Keyword: union of graphs

Search Result 12, Processing Time 0.016 seconds

NEIGHBORHOOD CONDITION AND FRACTIONAL f-FACTORS IN GRAPHS

  • Liu, Hongxia;Liu, Guizhen
    • Journal of applied mathematics & informatics
    • /
    • v.27 no.5_6
    • /
    • pp.1157-1163
    • /
    • 2009
  • Let G be a graph with vertex set V(G) and let f be a nonnegative integer-valued function defined on V(G). A spanning subgraph F of G is called a fractional f-factor if $d^h_G$(x)=f(x) for all x $\in$ for all x $\in$ V (G), where $d^h_G$ (x) = ${\Sigma}_{e{\in}E_x}$ h(e) is the fractional degree of x $\in$ V(F) with $E_x$ = {e : e = xy $\in$ E|G|}. In this paper it is proved that if ${\delta}(G){\geq}{\frac{b^2(k-1)}{a}},\;n>\frac{(a+b)(k(a+b)-2)}{a}$ and $|N_G(x_1){\cup}N_G(x_2){\cup}{\cdots}{\cup}N_G(x_k)|{\geq}\frac{bn}{a+b}$ for any independent subset ${x_1,x_2,...,x_k}$ of V(G), then G has a fractional f-factor. Where k $\geq$ 2 be a positive integer not larger than the independence number of G, a and b are integers such that 1 $\leq$ a $\leq$ f(x) $\leq$ b for every x $\in$ V(G). Furthermore, we show that the result is best possible in some sense.

  • PDF

Proof Algorithm of Erdös-Faber-Lovász Conjecture (Erdös-Faber-Lovász 추측 증명 알고리즘)

  • Lee, Sang-Un
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.1
    • /
    • pp.269-276
    • /
    • 2015
  • This paper proves the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture of the vertex coloring problem, which is so far unresolved. The Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture states that "the union of k copies of k-cliques intersecting in at most one vertex pairwise is k-chromatic." i.e., x(G)=k. In a bid to prove this conjecture, this paper employs a method in which it determines the number of intersecting vertices and that of cliques that intersect at one vertex so as to count a vertex of the minimum degree ${\delta}(G)$ in the Minimum Independent Set (MIS) if both the numbers are even and to count a vertex of the maximum degree ${\Delta}(G)$ in otherwise. As a result of this algorithm, the number of MIS obtained is x(G)=k. When applied to $K_k$-clique sum intersecting graphs wherein $3{\leq}k{\leq}8$, the proposed method has proved to be successful in obtaining x(G)=k in all of them. To conclude, the Erd$\ddot{o}$s-Faber-Lov$\acute{a}$sz conjecture implying that "the k-number of $K_k$-clique sum intersecting graph is k-chromatic" is proven.