• Title/Summary/Keyword: unilateral common carotid artery occlusion

Search Result 3, Processing Time 0.016 seconds

The protective effect of methanol extract of Corni Fructus on brain injury caused by unilateral common carotid artery occlusion in mice (산수유(山茱萸) 메탄올 추출물이 편측 경동맥 폐색으로 유도된 생쥐의 허혈성 뇌손상에 미치는 영향)

  • Choi, Na Ri;Jo, Sung Hyeon;Lee, Se-Eun;Lee, Min Ji;Cho, Suin
    • The Korea Journal of Herbology
    • /
    • v.35 no.1
    • /
    • pp.1-8
    • /
    • 2020
  • Objectives : This study was conducted to evaluate the effects of Corni Fructus, the dried fruits of Cornus officinalis Sieb., on unilateral common carotid artery occlusion (UCCAO) in mouse model. Methods : The Corni Fructus used in the experiment was extracted with anhydrous methanol, then filtered and freeze-dried. C57BL/6 mice used in the experiments were conducted left UCCAO surgery to set up UCCAO rodent model for mice. The mice were divided into five groups for evaluate the effect of methanol extract of Corni Fructus (COM) on UCCAO induced ischemic brain injury. The expression levels of nitric oxide in cerebrum and serum, body weight change were measured. To determine the effect of UCCAO and COM administration on brain neurons, morphological changes of the cerebrum through a microscope was conducted. And western blot was performed to confirm the underlying mechanism of neuroprotective effect of COM administration. Results : COM administered UCCAO groups (CO50, CO150, and CO500) had no significant effects on nitric oxide production in ipsilateral hemisphere proteins and sera. The CO500, 500 mg/kg COM administration, attenuated UCCAO-induced p38 inflammatory signaling pathway and inflammatory mediators such as iNOS and COX-2. The CO500 group showed resilient morphological changes of hippocampus neuronal cells about brain damage caused by decreased flow of blood. These group also showed decreased inflammation and cellular stress response in neuronal cells. Conclusions : From these results, COM has a neuroprotective property via moderating inflammatory factors and cellular stress inducing factors in brain cells.

Neuroprotective effects of geneticin (G418) via apoptosis in perinatal hypoxic-ischemic brain injury (주산기 저산소성 허혈성 뇌손상에서 항고사를 통한 geneticin (G418)의 신경보호 효과)

  • Ju, Mi;Lee, Hyun Ju;Lee, Sun Ju;Seo, Eo Su;Park, Hye Jin;Lee, Kye Yang;Lee, Gyeong Hoon;Choi, Eun Jin;Kim, Jin Kyung;Lee, Jong Won;Chung, Hai Lee;Kim, Woo Taek
    • Clinical and Experimental Pediatrics
    • /
    • v.51 no.2
    • /
    • pp.170-180
    • /
    • 2008
  • Purpose : Some antibiotics were known to exert neuroprotective effects in the animal model of hypoxic-ischemic (H-I) brain injury, but the mechanism is still unclear. A recent study reported that geneticin (G418), an aminoglycoside antibiotic, increased survival of human breast cancer cells by suppressing apoptosis. We investigated the neuroprotective effects of systemically administrated geneticin via anti-apoptosis following the H-I brain injury Methods : Seven-day-old Sprague-Dawley rat pups were subjected to unilateral (left) common carotid artery occlusion followed by 2.5 hours of hypoxic exposure and the cortical cell culture of rat brain was done under a hypoxic incubator. Apoptosis was measured in the injured hemispheres 7 days after H-I insult and in the injured cells from hypoxic chamber using morphologic analysis by Terminal dUTP Nick-end Labeling(TUNEL) assay and immunohistochemistry for caspase-3, and cytologic analysis by western blot and real time PCR for bax, bcl-2, and caspase-3. Results : The gross appearance and hematoxylin and eosin stain revealed increased brain volume in the geneticin-treated animal model of perinatal H-I brain injury. The TUNEL assay revealed decreased apoptotic cells after administration of geneticin in the cell culture model of anoxia. Immunohistochemistry showed decreased caspase-3 expression in geneticin-treated cortical cell culture. Western blot and real-time PCR showed decreased caspase-3 expression and decreased ratio of Bax/Bcl-2 expression in geneticin-treated animal model. Conclusion : Geneticin appears to exert a neuroprotective effect against perinatal H-I brain injury at least via anti-apoptosis. However, more experiments are needed in order to demonstrate the usefulness of geneticin as a preventive and rescue treatment for H-I brain injuries of neonatal brain.

Effect of Xanthine Oxidase Inhibitor on Cerebral Hypoxia-Ischemia in Neonatal Rats (Xanthine Oxidase Inhibitor가 저산소성-허혈성 뇌손상이 유도된 신생쥐에 미치는 영향)

  • Choi, Dae-Ho;Oh, Yeon-Kyun;Park, Seung-Tak
    • Clinical and Experimental Pediatrics
    • /
    • v.45 no.6
    • /
    • pp.732-742
    • /
    • 2002
  • Purpose : In order to evaluate the hypoxia-ischemia(H-I) induced neurotoxicity and the protective effect of xanthine oxidase(XO) inhibitor(allopurinol), cell number, cell viability, lactate dehydrogenase(LDH), protein synthesis(PS) and protein kinase C(PKC) activity were measured in cerebral neurons and astrocytes. Methods : Cytotoxic effect was measured by in vitro assay at 12-72 hours after H-I on cerebral neurons and astrocytes derived from 7-day old neonatal rats which were subjected to unilateral common carotid artery occlusion and exposed to hypoxic condition for 3 hours. The protective effect of XO inhibitor was examined by the cell number, cell viability, LDH and PS on 14 days after H-I with allopurinol intraperitoneal injection 15 minutes prior to H-I. In addition, the effect of allopurinol on PKC activity in hypoxic conditions was examined in neurons. Results : 72 hours from H-I, the cell numbers and viability were decreased significantly in time-dependent manner on neurons and those of astrocytes also decreased slightly, compared with control. In neonatal rats treated with H-I, the cell number, cell viability, and PS in neurons were decreased, but LDH was increased significantly compared with control. In neonatal rats pretreated with allopurinol, the cell number and viability, and PS in neurons were increased and LDH was decreased significantly compared with H-I. PKC was increased remarkably after hypoxic condition. But PKC was decreased significantly against hypoxic condition after allopurinol pretreatment. Conclusion : From these results, it is suggested that H-I is more toxic in neurons than astrocytes and allopurinol is very protective with increasing of PS, and decreasing of LDH and PKC in neurons from hypoxic-ischemic condition.