• Title/Summary/Keyword: uniformly bounded operator

Search Result 12, Processing Time 0.015 seconds

A MAXIMUM PRINCIPLE FOR NON-NEGATIVE ZEROTH ORDER COEFFICIENT IN SOME UNBOUNDED DOMAINS

  • Cho, Sungwon
    • Korean Journal of Mathematics
    • /
    • v.26 no.4
    • /
    • pp.747-756
    • /
    • 2018
  • We study a maximum principle for a uniformly elliptic second order differential operator in nondivergence form. We allow a bounded positive zeroth order coefficient in a certain type of unbounded domains. The results extend a result by J. Busca in a sense of domains, and we present a simple proof based on local maximum principle by Gilbarg and Trudinger with iterations.

COMPOSITION OPERATORS ON THE PRIVALOV SPACES OF THE UNIT BALL OF ℂn

  • UEKI SEI-ICHIRO
    • Journal of the Korean Mathematical Society
    • /
    • v.42 no.1
    • /
    • pp.111-127
    • /
    • 2005
  • Let B and S be the unit ball and the unit sphere in $\mathbb{C}^n$, respectively. Let ${\sigma}$ be the normalized Lebesgue measure on S. Define the Privalov spaces $N^P(B)\;(1\;<\;p\;<\;{\infty})$ by $$N^P(B)\;=\;\{\;f\;{\in}\;H(B) : \sup_{0 where H(B) is the space of all holomorphic functions in B. Let ${\varphi}$ be a holomorphic self-map of B. Let ${\mu}$ denote the pull-back measure ${\sigma}o({\varphi}^{\ast})^{-1}$. In this paper, we prove that the composition operator $C_{\varphi}$ is metrically bounded on $N^P$(B) if and only if ${\mu}(S(\zeta,\delta)){\le}C{\delta}^n$ for some constant C and $C_{\varphi}$ is metrically compact on $N^P(B)$ if and only if ${\mu}(S(\zeta,\delta))=o({\delta}^n)$ as ${\delta}\;{\downarrow}\;0$ uniformly in ${\zeta}\;\in\;S. Our results are an analogous results for Mac Cluer's Carleson-measure criterion for the boundedness or compactness of $C_{\varphi}$ on the Hardy spaces $H^P(B)$.