• 제목/요약/키워드: uniform thermal environment

검색결과 75건 처리시간 0.026초

태양열집속집열기의 설계 방법에 관한 연구 (A New Approach to Design Method of the Solar Compound Parabolic Concentrator with Tubular Absorber)

  • 김석종;임상훈
    • KIEAE Journal
    • /
    • 제2권3호
    • /
    • pp.33-38
    • /
    • 2002
  • The intermediate range of temperatures($100{\sim}300^{\circ}C$) which can be achieved with CPCs(Compound Parabolic Concentrators) without tracking device provides both economic and thermal advantages for solar collector design. The present paper summarizes critical design considerations for CPC with cylindrical absorber and its optical performance using ray tracing program. Concentration ratios vary as acceptance half angle, ratio of reflector height to aperture width and ratio of reflector area to aperture area. This effects showed that the concentration ratio was increased as acceptance angle but optimum ratio of reflector height to aperture width existed at critical value. As a result of ray tracing, solar ray losses was maximized at acceptance half angle and this problem was solved by increasing absorber tube diameter. The concentrating flux distribution on the absorber surface was uniform but peak flux existed.

마이크로 쿨러 증발기의 비등 전 과도열전달 해석 (Transient Heat Transfer Analysis on the Evaporator of a Micro-Cooler prior to Roiling)

  • 박병규;김근오
    • 대한기계학회논문집B
    • /
    • 제26권2호
    • /
    • pp.211-218
    • /
    • 2002
  • It has been investigated for the temperature profile in a planar evaporator of micro-cooler subject to a uniform heat flux prior to tole initiation of boiling. The results of the analysis allow for the determination of applied power levels fur which nucleation is likely to occur only within the vapor grooves of the evaporator while maintaining subcooling in the liquid core, thereby increasing the likelihood of a successful startup. Also, limits are fecund for which additional increases in the applied heat flux do not increase the temperature difference between the vapor grooves and the wick-liquid core interface. This analysis is appropriate for the microscale evaporators of micro-cooler during a fully-flooded startup as well as starter pump designs and micro-CPLs(capillary pumped loops). The results are useful in the initial basic design of microscale heat transfer devices.

환경영향평가를 통한 화력발전소의 환경개선 효과와 사회적 편익 (Environmental Improvement Effect and Social Benefit of Environmental Impact Assessment: Focusing on Thermal Power Plant)

  • 강유진;김유미;문난경
    • 환경영향평가
    • /
    • 제27권3호
    • /
    • pp.322-333
    • /
    • 2018
  • 본 연구는 환경영향평가 제도 운영의 성과를 정량적으로 분석하기 위하여 화력발전소 대기질 분야에서 환경영향평가를 통한 환경영향 저감효과를 계량화하고 그로 인한 사회적 편익을 추정하였다. 환경영향평가의 성과는 제도의 시행여부에 따른 차이로 정의하고, 개별 사업이 환경영향평가를 시행하지 않더라도 준수해야하는 환경 관련 기준과 환경영향평가를 통해 협의된 협의기준을 비교하였다. 2010년부터 10년간 협의완료된 화력발전소 건설사업 전체 60건을 대상으로 환경영향평가의 시행여부에 따른 차이를 추정한 결과 주요 대기오염물질의 배출량이 크게 저감된 것으로 나타났다. $PM_{10}$의 경우 연간 3,745톤, $NO_2$는 74,569톤, $SO_2$는 37,647톤의 배출량이 저감되었으며, 이를 사회적 편익으로 환산한 결과 방법론에 따라 연간 2,397억 원에서 5조 9,665억 원으로 추정되었고, 이는 화력발전소의 운영기간 30년 동안 7조 1,916억 원에서 178조 9,944억 원에 이르는 규모의 사회적 비용이 절감되는 것을 의미한다. 저감된 대기오염물질의 배출량의 규모는 전국의 에너지 발전시설에서 배출되는 양의 절반에 이르며, 우리나라의 연간 경상의료비보다 큰 금액의 경제적 가치를 지닌다. 이는 모든 사업이 배출허용기준과 같이 관련 근거법에 따라서 획일적인 기준을 적용받지만, 환경영향평가 과정을 통해 대상 지역과 사업의 특성 등을 고려하여 각각의 사업계획이 수립됨에 따라 발생한 성과임을 의미한다.

고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구 (A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration)

  • 김장우;정진도;김은권
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

Nonlinear finite element solutions of thermoelastic flexural strength and stress values of temperature dependent graded CNT-reinforced sandwich shallow shell structure

  • Mehar, Kulmani;Panda, Subrata K.
    • Structural Engineering and Mechanics
    • /
    • 제67권6호
    • /
    • pp.565-578
    • /
    • 2018
  • This research article reported the nonlinear finite solutions of the nonlinear flexural strength and stress behaviour of nano sandwich graded structural shell panel under the combined thermomechanical loading. The nanotube sandwich structural model is derived mathematically using the higher-order displacement polynomial including the full geometrical nonlinear strain-displacement equations via Green-Lagrange relations. The face sheets of the sandwich panel are assumed to be carbon nanotube-reinforced polymer composite with temperature dependent material properties. Additionally, the numerical model included different types of nanotube distribution patterns for the sandwich face sheets for the sake of variable strength. The required equilibrium equation of the graded carbon nanotube sandwich structural panel is derived by minimizing the total potential energy expression. The energy expression is further solved to obtain the deflection values (linear and nonlinear) via the direct iterative method in conjunction with finite element steps. A computer code is prepared (MATLAB environment) based on the current higher-order nonlinear model for the numerical analysis purpose. The stability of the numerical solution and the validity are verified by comparing the published deflection and stress values. Finally, the nonlinear model is utilized to explore the deflection and the stresses of the nanotube-reinforced (volume fraction and distribution patterns of carbon nanotube) sandwich structure (different core to face thickness ratios) for the variable type of structural parameter (thickness ratio, aspect ratio, geometrical configurations, constraints at the edges and curvature ratio) and unlike temperature loading.

나노 임프린트 장비 최적 환경을 위한 제어 장비 및 시스템에 관한 연구 (A study on control unit and system for nanoimprint equipment of the optimum conditions.)

  • 박경서;김우송;임홍재;장시열;이기성;정재일;임시형;신동훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2375-2380
    • /
    • 2008
  • Controlling of thermal environment and flow in nanoimprint process chamber is important to ensure high precision levels of products. The purpose of this paper is to build optimal nanoimprint process environment. Because of this, Optimum PI control parameter for precise temperature control has been examined. Also porous medium of ventilation system is simulated for uniform flow in the equipment chamber. The porous medium consists of mesh structure, and is installed to place which flow the influx of the air flows. PID control parameter is based on the data obtained by experiment. And then heating and cooling method which simultaneously operated was used for decreasing an error. In conclude temperature in the equipment chamber was able to control precisely in the range of ${\pm}0.1^{\circ}C$ by the PID control parameter and Deadband.

  • PDF

서열환경 하에서의 텐셀소재 의복의 착용감 연구 (A Study on Wear Sensations of Tecel Fabrics in Hot Environments)

  • 권오경;송민규;이창미
    • 대한가정학회지
    • /
    • 제38권3호
    • /
    • pp.149-161
    • /
    • 2000
  • The purpose of the study was to examine the effect of Tencel fabrics on physiological reactions of a human body and thermal comfort under the hot environment. The 3 females subjects in their twenties were selected and a wear sensation test of the subjects was performed with four experimental ensembles made of cotton and Tencel fabrics for the study in the hot environment(3$0^{\circ}C$, 70%RH). The resets of the test were summarized as follows: For the mean skin temperature, Tencel garments showed about 0.2$^{\circ}C$-0.4$^{\circ}C$ lower than that of the cotton garment. The temperature of the rectal was 0.2$^{\circ}C$-0.4$^{\circ}C$ lower for Tencel garments than that for the colon garment. In the form of ensembles, the order of rectal temperature of the subjects for both Tencel and cotton ensembles was 1>IV>III>II. In the body weight loss according to garment materials, Tencel had a lower and more uniform than the cotton Thus, it could concluded that if the perspiration took into account, garments made of Tencel can be more ideal than that of the cotton. The heart rate and oxygen consumption appeared to be proportional to each other. For the heart rate, ensemble TI and TII of Tencel were much lower than ensemble CI and CII. For whole enembles except for TIV, Tencel ensembles showed relatively better thermal sensation and comfort sensation than the cotton ensembles. In the fatigue sensation, the reactions of the subjects were “slightly fatigue” and “fatigue” for the cotton, but “neutral” and “slightly fatigue” for Tencel.

  • PDF

PEEK/SiC와 PEEK/CF 복합재료의 열확산도에 대한 연구 (Thermal Diffusivity of PEEK/SiC and PEEK/CF Composites)

  • 김성룡;임승원;김대훈;이상협;박종만
    • 접착 및 계면
    • /
    • 제9권3호
    • /
    • pp.7-13
    • /
    • 2008
  • 열전도도가 유사한 입자형 필러인 silicon carbide (SiC)와 섬유형 필러인 carbon fiber (CF)를 polyetheretherketone (PEEK) 고분자에 첨가하여 복합재료의 열확산도에 미치는 영향을 연구하였다. 전자현미경을 통해 얻은 단면사진으로부터 SiC와 CF가 PEEK 매트릭스 안에 균일하게 분산되어 있고 필러들이 부분적으로 서로 네트워크를 형성한 것을 관찰하였다. 레이저 섬광법을 이용하여 상온에서 $200^{\circ}C$까지 PEEK/SiC와 PEEK/CF 복합재료의 열확산도를 측정하였으며, 열확산도는 온도가 상승함에 따라 PEEK-필러와 필러-필러 계면에서의 포논산란 증가에 의하여 감소하였다. 필러함량이 증가함에 따라 복합재료의 열확산도가 증가하였으며, 2상계에 대하여 유도된 Maxwell 및 Nielson 예측식을 실험값과 비교함으로써 매트릭스 내의 필러 분포, 방향성, 종횡비 및 필러간의 상호작용 등을 유추할 수 있었다. Nielson 예측식은 PEEK/SiC 복합재료에 대하여 열전도도를 잘 예측하였다. 입자형 필러인 SiC에 비하여 섬유형 필러인 탄소섬유가 동일한 함량에서 열확산에 기여하는 필러 네트워크를 효과적으로 형성하여 높은 열확산도를 가지는 것으로 추정된다.

  • PDF

Vibration analysis of nonlocal advanced nanobeams in hygro-thermal environment using a new two-unknown trigonometric shear deformation beam theory

  • Mouffoki, Abderrahmane;Bedia, E.A. Adda;Houari, Mohammed Sid Ahmed;Tounsi, Abdelouahed;Mahmoud, S.R.
    • Smart Structures and Systems
    • /
    • 제20권3호
    • /
    • pp.369-383
    • /
    • 2017
  • In this work, the effects of moisture and temperature on free vibration characteristics of functionally graded (FG) nanobeams resting on elastic foundation is studied by proposing a novel simple trigonometric shear deformation theory. The main advantage of this theory is that, in addition to including the shear deformation influence, the displacement field is modeled with only 2 unknowns as the case of the classical beam theory (CBT) and which is even less than the Timoshenko beam theory (TBT). Three types of environmental condition namely uniform, linear, and sinusoidal hygrothermal loading are studied. Material properties of FG beams are assumed to vary according to a power law distribution of the volume fraction of the constituents. Equations of motion are derived from Hamilton's principle. Numerical examples are presented to show the validity and accuracy of present shear deformation theories. The effects of hygro-thermal environments, power law index, nonlocality and elastic foundation on the free vibration responses of FG beams under hygro-thermal effect are investigated.

Micro to Nano-scale Electrohydrodynamic Nano-Inkjet Printing for Printed Electronics: Fundamentals and Solar Cell Applications

  • 변도영
    • 한국재료학회:학술대회논문집
    • /
    • 한국재료학회 2011년도 춘계학술발표대회
    • /
    • pp.3.2-3.2
    • /
    • 2011
  • In recent years, inkjet printing technology has received significant attention as a micro/nanofabrication technique for flexible printing of electronic circuits and solar cells, as well for biomaterial patterning. It eliminates the need for physical masks, causes fewer environment problems, lowers fabrication costs, and offers good layer-to-layer registration. To fulfill the requirements for use in the above applications, however, the inkjet system must meet certain criteria such as high frequency jetting, uniform droplet size, high density nozzle array, etc. Existing inkjet devices are either based on thermal bubbles or piezoelectric pumping; they have several drawbacks for flexible printing. For instance, thermal bubble jetting has limitations in terms of size and density of the nozzle array as well as the ejection frequency. Piezoelectric based devices suffer from poor pumping energy in addition to inadequate ejection frequency. Recently, an electrohydrodynamic (EHD) printing technique has been suggested and proposed as an alternative to thermal bubble or piezoelectric devices. In EHD jetting, a liquid (ink) is pumped through a nozzle and a strong electric field is applied between the nozzle and an extractor plate, which induce charges at the surfaces of the liquid meniscus. This electric field creates an electric stress that stretches the meniscus in the direction of the electric field. Once the electric field force is larger than the surface tension force, a liquid droplet is formed. An EHD inkjet head can produce droplets smaller than the size of the nozzle that produce them. Furthermore, the EHD nano-inkjet can eject high viscosity liquid through the nozzle forming tiny structures. These unique features distinguish EHD printing from conventional methods for sub-micron resolution printing. In this presentation, I will introduce the recent research results regarding the EHD nano-inkjet and the printing system, which has been applied to solar cell or thin film transistor applications.

  • PDF