• Title/Summary/Keyword: uniform strain

Search Result 375, Processing Time 0.027 seconds

Surface and size dependent effects on static, buckling, and vibration of micro composite beam under thermo-magnetic fields based on strain gradient theory

  • Mohammadimehr, Mehdi;Mehrabi, Mojtaba;Hadizadeh, Hasan;Hadizadeh, Hossein
    • Steel and Composite Structures
    • /
    • v.26 no.4
    • /
    • pp.513-531
    • /
    • 2018
  • In this article, static, buckling and free vibration analyses of a sinusoidal micro composite beam reinforced by single-walled carbon nanotubes (SWCNTs) with considering temperature-dependent material properties embedded in an elastic medium in the presence of magnetic field under transverse uniform load are presented. This system is used at micro or sub micro scales to enhance the stiffness of micro composite structures such as bar, beam, plate and shell. In the present work, the size dependent effects based on surface stress effect and modified strain gradient theory (MSGT) are considered. The generalized rule of mixture is employed to predict temperature-dependent mechanical and thermal properties of micro composite beam. Then, the governing equations of motions are derived using Hamilton's principle and energy method. Numerical results are presented to investigate the influences of material length scale parameters, elastic foundation, composite fiber angle, magnetic intensity, temperature changes and carbon nanotubes volume fraction on the bending, buckling and free vibration behaviors of micro composite beam. There is a good agreement between the obtained results by this research and the literature results. The obtained results of this study demonstrate that the magnetic intensity, temperature changes, and two parameters elastic foundations have important effects on micro composite stiffness, while the magnetic field has greater effects on the bending, buckling and free vibration responses of micro composite beams. Moreover, it is shown that the effects of surface layers are important, and observed that the changes of carbon nanotubes volume fraction, beam length-to-thickness ratio and material length scale parameter have noticeable effects on the maximum deflection, critical buckling load and natural frequencies of micro composite beams.

Behavior of improved through-diaphragm connection to square tubular column under tensile loading

  • Qin, Ying;Zhang, Jing-Chen;Shi, Peng;Chen, Yi-Fu;Xu, Yao-Han;Shi, Zuo-Zheng
    • Structural Engineering and Mechanics
    • /
    • v.68 no.4
    • /
    • pp.475-483
    • /
    • 2018
  • Square tubular columns are commonly used in moment resisting frames, while through-diaphragm connection is the most typical configuration detail to connect the H-shaped beam to the column. However, brittle fracture normally occurs at the complete joint penetration weld between the beam flange and the through-diaphragm due to the stress concentration caused by the geometrical discontinuity. Accordingly, three improved types of through-diaphragm are presented in this paper to provide smooth force flow path comparing to that of conventional connections. Tensile tests were conducted on four specimens and the results were analyzed in terms of failure modes, load-displacement response, yield and ultimate capacity, and initial stiffness. Furthermore, strain distributions on the through-diaphragm, the beam flange plate, and the column face were comprehensively evaluated and discussed. It was found that all the proposed three types of improved through-diaphragm connections were able to reduce the stress concentration in the welds between the beam flange and the through-diaphragm. Furthermore, the stress distribution in connection with longer tapered through-diaphragm was more uniform.

Buckling and free vibration analysis of tapered FG- CNTRC micro Reddy beam under longitudinal magnetic field using FEM

  • Mohammadimehr, M.;Alimirzaei, S.
    • Smart Structures and Systems
    • /
    • v.19 no.3
    • /
    • pp.309-322
    • /
    • 2017
  • In this paper, the buckling, and free vibration analysis of tapered functionally graded carbon nanotube reinforced composite (FG-CNTRC) micro Reddy beam under longitudinal magnetic field using finite element method (FEM) is investigated. It is noted that the material properties of matrix is considered as Poly methyl methacrylate (PMMA). Using Hamilton's principle, the governing equations of motion are derived by applying a modified strain gradient theory and the rule of mixture approach for micro-composite beam. Micro-composite beam are subjected to longitudinal magnetic field. Then, using the FEM, the critical buckling load, and natural frequency of micro-composite Reddy beam is solved. Also, the influences of various parameters including ${\alpha}$ and ${\beta}$ (the constant coefficients to control the thickness), three material length scale parameters, aspect ratio, different boundary conditions, and various distributions of CNT such as uniform distribution (UD), unsymmetrical functionally graded distribution of CNT (USFG) and symmetrically linear distribution of CNT (SFG) on the critical buckling load and non-dimensional natural frequency are obtained. It can be seen that the non-dimensional natural frequency and critical buckling load decreases with increasing of ${\beta}$ for UD, USFG and SFG micro-composite beam and vice versa for ${\alpha}$. Also, it is shown that at the specified value of ${\alpha}$ and ${\beta}$, the dimensionless natural frequency and critical buckling load for SGT beam is more than for the other state. Moreover, it can be observed from the results that employing magnetic field in longitudinal direction of the micro-composite beam increases the natural frequency and critical buckling load. On the other hands, by increasing the imposed magnetic field significantly increases the stability of the system that can behave as an actuator.

A STUDY OF THE STRESS TRANSMISSION OF VARIOUS ARTIFICIAL TEETH AND DENTURE BASE MATERIALS TO THE UNDER-LYING SUPPORTING TISSUES (인공치와 의치상의 재질에 따른 의치상 하부 지지조직에의 응력전달에 관한 연구)

  • Chung, Hyun-Gun;Chung, Moon-Kyu;Lee, Ho-Yong
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.27 no.2
    • /
    • pp.79-100
    • /
    • 1989
  • The Purpose of this study was to investigate material differences in stress transmission among various artificial teeth and denture base materials. For this study, a two-dimensional finite element model and a two-dimensional photoelastic model of a mandible with complete denture were made. A resin tooth and a porcelain tooth were used as artificial teeth, and a resin base, a metal lined base, and a soft-liner lined base were used as denture bases. An occlusal load was applied and principal stresses generated in the supporting tissues were compared. To test the impact stress transmission, strain gauge attached to the denture base specimens made of the different materials were made in thick and thin groups. Voltage outputs from hitting the specimen with a steel ball were compared. The results were as follows : 1. In FEM, increasing the mucosal thickness reduced the maximum principal stresses in the supporting tissues, but altering the tooth materials and the base materials induced no difference in the stresses. 2. In photoelastic model study, no difference in fringe order among the specimens were observed, but the thick mucosa group and the soft-liner lined group revealed a more uniform distribution of the load. 3. In strain measuring, the impact force transmission was highest in the soft-liner lined group, and was the lowest in the metal lined group(p<0.01). 4. In the thin group using the resin base, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the thick group. In the soft-liner lined group, the porcelain tooth showed higher impact stress transmission than the resin tooth(p<0.01), but no difference was observed between them in the metal lined group. 5. The thick group showed lower impact stress transmission than the thin group(p<0.01).

  • PDF

An Analysis of Axisymmetric Deep Drawing by the Energy Method (에너지법에 의한 축대칭 디프드로잉의 해석)

  • 양동열;이항수
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.1
    • /
    • pp.51-61
    • /
    • 1993
  • A systematic approach of the energy method is proposed for analysis of axisymmetric deep drawing in which the total deforming region is divided into five sections by the geometric characteristic. The corresponding solution is found through optimization of the total energy dissipation with respect to some parameters assumed in the kinematically admissible velocity field defined over each region. The sheet blank is divided into three-or five-layers to consider the bending effect. For the evaluation of frictional energy, it is assumed that the blank holding force acts on the outer rim of the flange and that the contact pressure acting on punch shoulder or die shoulder has uniform distributions, respectively. The computed results by the present method are compared with the experiment and the computed results by the elastic-plastic finite element method for the distribution of thickness strain and the relation between the punch stroke and punch load. The results for the case of multi-layers show better agreements than for the case of a single layer in load vs. stroke relation and strain distribution. It is thus shown that the multi-layer technique can be effectively employed in analyzing axisymmetric deep drawing in connection with the energy method.

Emission and Structural Properties of Titanium Oxide Nanoparticles-coated a-plane (11-20) GaN by Spin Coating Method

  • Kim, Ji-Hoon;Son, Ji-Su;Baik, Kwang-Hyeon;Park, Jung-Ho;Hwang, Sung-Min
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.146-146
    • /
    • 2011
  • The blue light emitting diode (LED) structure based on non-polar a-plane (11-20) GaN which was coated TiO2 nanoparticles using spin coating method was grown on r-plane (1-102) sapphire substrates to improve light extraction efficiency. We report on the emission and structural properties with temperature dependence of photoluminescence (PL) and x-ray rocking curves (XRC). From PL results at 13 K of undoped GaN samples, basal plane stacking fault (BSF) and near band edge (NBE) emission peak were observed at 3.434 eV and 3.484 eV, respectively. We also found the temperature-induced band-gap shrinkage, which was fitted well with empirical Varshini's equation. The PL intensity of TiO2 nanoparticles ?coated multiple quantum well (MQW) sample is decayed slower than that of no coating sample with increasing temperature. The anisotrophic strain and azimuth angle dependence in the films were shown from XRC results. The full width at half maximum (FWHM) along the GaN [11-20] and [1-100] directions were 564.9 arcsec and 490.8 arcsec, respectively. A small deviation of FWHM values at in-plane direction is attributed to uniform in-plane strain.

  • PDF

Analysis of Electrical and Physical Property of the PU/MWNT Film and Dispersion Characteristics of MWNT According to the Solvent (용매에 따른 MWNT의 분산특성과 제조된 PU/MWNT 필름의 전기적·물리적 특성 분석)

  • Kim, Jeong-Hyun;Ma, Hye-Young;Yang, Sung-Yong;Kim, Seung-Jin
    • Textile Coloration and Finishing
    • /
    • v.24 no.1
    • /
    • pp.69-78
    • /
    • 2012
  • This paper surveys the physical properties of the MWNT dispersion solution dispersed with the three types of solvents and of the polyurethane composite film for improvement of mechanical properties and electrical characteristics of PU/MWNT composite film. For this purpose, the MWNT dispersed solution was mixed with three types of solvent such as IPA, MEK and Toluene and then mixed with polyurethane (100part) with variation of loading content (0, 10, 20, 30, 40, 50 part) of MWNT dispersed solution in the ultrasonic wave dispersion apparatus. And eighteen PU/MWNT composite films were prepared as specimens. The various physical properties of these PU/MWNT films were measured and discussed with the loading content of three types of MWNT dispersed solutions. The highest absorbancy among the three types of dispersed solutions was shown in the IPA/MWNT solution. But the absorbancy of PU/MWNT films was not same as the solution. The low electrical surface and volume resistivity of PU/MWNT film were shown at the condition of 20 and 10 parts loading of IPA/MWNT dispersed solution, respectively. The low triboelectricity of PU/MWNT film was shown at the condition of above 30part loading of IPA/MWNT dispersed solution. The breaking strength and strain of PU/MWNT film prepared with IPA/MWNT dispersed solution were decreased with increasing loading content of IPA/MWNT from 10 to 40 parts. The maximum breaking strength and breaking strain according to the dispersion solution were shown on the IPA/MWNT dispersed solution. The uniform dispersion of PU/MWNT film according to the loading content of MWNT solution was shown by surface image analysis on the films dispersed with IPA.

A Study of Alcohol Dehydrogenase of Drosophila melanogaster in Korea by Starch Gel Electrophoresis (Starch gel 전기영동법에 의한 한국산 초파리의 alcohol dehydrogenase (ADH)에 관한 연구)

  • Chung, Yong-Jai
    • The Korean Journal of Zoology
    • /
    • v.16 no.1
    • /
    • pp.67-77
    • /
    • 1973
  • The alcohol dehydrogenase (ADH) isozyme of the four strains of Drosophila melanogaster in Korea was studied by the starch gel electrophoresis and the results are given below: 1. The numbers of bands, staining intensity and mobility are considerably variable in the three strains, Chunchun, Jinju and Sinchon-Seoul, but relatively uniform in the Taijun strain. 2. It is suggested that the Taijun strain may be homogeneous and the other three strains, on the contrary, heterogeneous for the ADH constitution. 3. The electrophoretic patterns are observed to be different between males and females in all strains used which is hard to intereret. 4. The starch gel electrophoresis is to have a resolving power superior to cellulose acetate electrophoresis.

  • PDF

A Study on the Optimized Design of the Helmets for Fire and Gas Safety (소방.가스안전용 헬멧의 최적설계에 관한 연구)

  • Cho, Seung-Hyun;Kim, Do-Hyun;Kim, Chung-Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.12 no.3
    • /
    • pp.24-30
    • /
    • 2008
  • In this paper, the stress and strain characteristics of a helmet shell structure have been analyzed by using the finite element method and Taguchi's design method as functions of the material properties, the thickness of a helmet, the thickness and the number of a bead frame. The optimized design of the helmets for a firefighter and a gas worker is very important for increasing the strength safety and an impact energy absorption capacity of a helmet shell due to an impulsive external force. Thus, the optimized design data of the helmet indicated that the uniform thickness of a helmet shell may be reduced for reducing the total weight of a helmet and increasing the strain energy absorption rate, but the thickness and the number of a bead frame would be increased for increasing the impact strength of the helmet.

  • PDF

Tension Tests of Copper Thin Films (구리박막 시험편의 인장시험)

  • Park, Kyung Jo;Kim, Chung Youb
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.8
    • /
    • pp.745-750
    • /
    • 2017
  • Tension tests for copper thin films with thickness of $12{\mu}m$ were performed by using a digital image correlation method based on consecutive digital images. When calculating deformation using digital image correlation, a large deformation causes errors in the calculated result. In this study, the calculation procedure was improved to reduce the error, so that the full field deformation and the strain of the specimen could be accurately and directly measured on its surface. From the calculated result, it can be seen that the strain distribution is not uniform and its variation is severe, unlike the distribution in a common bulk specimen. This might result from the surface roughness introduced in the films during the fabrication process by electro-deposition.