• Title/Summary/Keyword: uniform grid

Search Result 207, Processing Time 0.032 seconds

Relationship of soil profile strength and apparent soil electrical conductivity to crop yield (실시간 포장에서 측정한 토양 경도 및 전자장 유도 전기전도도와 작물수량과의 관계)

  • Jung, Won-Kyo;Kitchen, Newell R.;Sudduth, Kenneth A.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.109-115
    • /
    • 2006
  • Understanding characteristics of claypan soils has long been an issue for researchers and farmers because the high-clay subsoil has a pronounced effect on grain crop productivity. The claypan restricts water infiltration and storage within the crop root zone, but these effects are not uniform within fields. Conventional techniques of identifying claypan soil characteristics require manual probing and analysis which can be quite expensive; an expense most farmers are unwilling to pay. On the other hand, farmers would be very interested if this information could be obtained with easy-to-use field sensors. Two examples of sensors that show promise for helping in claypan soil characterization are soil profile strength sensing and bulk soil apparent electrical conductivity (ECa). Little has been reported on claypan soils relating the combined information from these two sensors with grain crop yield. The objective of this research was to identify the relationships of sensed profile soil strength and soil EC with nine years of crop yield (maize and soybean) from a claypan soil field in central Missouri. A multiple-probe (five probes on 19-cm spacing) cone penetrometer was used to measure soil strength and an electromagnetic induction sensor was used to measure soil EC at 55 grid site locations within a 4-ha research field. Crop yields were obtained using a combine equipped with a yield monitoring system. Soil strength at the 15 to 45 cm soil depth were significantly correlated to crop yield and ECa. Estimated crop yields from apparent electrical conductivity and soil strength were validated with an independent data set. Using measurements from these two sensors, standard error rates for estimating yield ranged from 9 to 16%. In conclusion, these results showed that the sensed profile soil strength and soil EC could be used as a measure of the soil productivity for grain crop production.

A Schematic Map Generation System Using Centroidal Voronoi Tessellation and Icon-Label Replacement Algorithm (중심 보로노이 조각화와 아이콘 및 레이블 배치 알고리즘을 이용한 도식화된 지도 생성 시스템)

  • Ryu Dong-Sung;Uh Yoon;Park Dong-Gyu
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.2
    • /
    • pp.139-150
    • /
    • 2006
  • A schematic map is a special purpose map which is generated to recognize it's objects easily and conveniently via simplifying and highlighting logical geometric information of a map. To manufacture the schematic map with road, label and icon, we must generate simplified route map and replace many geometric objects. Performing a give task, however, there are an amount of overlap areas between geometric objects whenever we process the replacement of geometry objects. Therefore we need replacing geometric objects without overlap. But this work requires much computational resources, because of the high complexity of the original geometry map. We propose the schematic map generation system whose map consists of icons and label. The proposed system has following steps: 1) eliminating kinks that are least relevant to the shape of polygonal curve using DCE(Discrete Curve Evolution) method. 2) making an evenly distributed route using CVT(Centroidal Voronoi Tessellation) and Grid snapping method. Therefore we can keep the structural information of the route map from CVT method. 3) replacing an icon and label information with collision avoidance algorithm. As a result, we can replace the vertices with a uniform distance and guarantee the available spaces for the replacement of icons and labels. We can also minimize the overlap between icons and labels and obtain more schematized map.

  • PDF

Application of a Convolution Method for the Fast Prediction of Wind-Induced Surface Current in the Yellow Sea and the East China Sea (표층해류 신속예측을 위한 회선적분법의 적용)

  • 강관수;정경태
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.7 no.3
    • /
    • pp.265-276
    • /
    • 1995
  • In this Paper, the Performance of the convolution method has been investigated as an effort to develop a simple system of predicting wind-driven surface current on a real time basis. In this approach wind stress is assumed to be spatially uniform and the effect of atmospheric pressure is neglected. The discrete convolution weights are determined in advance at each point using a linear three-dimensional Galerkin model with linear shape functions(Galerkin-FEM model). Four directions of wind stress(e.g. NE, SW, NW, SE) with unit magnitude are imposed in the model calculation for the construction of data base for convolution weights. Given the time history of wind stress, it is then possible to predict with-driven currents promptly using the convolution product of finite length. An unsteady wind stress of arbitrary form can be approximated by a series of wind pulses with magnitude of 6 hour averaged value. A total of 12 pulses are involved in the convolution product To examine the accuracy of the convolution method a series of numerical experiments has been carried out in the idealized basin representing the scale of the Yellow Sea and the East China Sea. The wind stress imposed varies sinusoidally in time. It was found that the predicted surface currents and elevation fields were in good agreement with the results computed by the direct integration of the Galerkin model. A model with grid 1/8$^{\circ}$ in latitude, l/6$^{\circ}$ in longitude was established which covers the entire region of the Yellow Sea and the East China Sea. The numerical prediction in terms of the convolution product has been carried out with particular attention on the formation of upwind flow in the middle of the Yellow Sea by northerly wind.

  • PDF

Numerical Analysis of Nonlinear Shoaling Characteristics over Surf Zone Using SPH and Lagrangian Dynamic Smagronsky Model (Lagrangian Dynamic Smagronsky 난류모형과 SPH를 이용한 쇄파역에서의 비선형 천수거동에 관한 연구)

  • Cho, Yong-Jun;Lee, Heon
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.19 no.1
    • /
    • pp.81-96
    • /
    • 2007
  • Nonlinear shoaling characteristics over surf zone are numerically investigated based on spatially averaged NavierStokes equation. We also test the validity of gradient model for turbulent stresses due to wave breaking using the data acquainted during SUPERTANK LABORATORY DATA COLLECTION PROJECT(Krauss et al., 1992). It turns out that the characteristics length scale of breaking induced current is not negligible, which firmly stands against ever popular gradient model, ${\kappa}-{\varepsilon}$ model, but favors Large Eddy Simulation with finer grid. Based on these observations, we model the residual stress of spatially averaged NavierStokes equation after Lagrangian Dynamic Smagorinsky(Meneveau et al., 1996). We numerically integrate newly proposed wave equations using SPH with Gaussian kernel function. Severely deformed water surface profile, free falling water particle, queuing splash after landing of water particle on the free surface and wave finger due to structured vortex on rear side of wave crest(Narayanaswamy and Dalrymple, 2002) are successfully duplicated in the numerical simulation of wave propagation over uniform slope beach, which so far have been regarded very difficult features to mimic in the computational fluid mechanics.

Evaluation of Drainage Improvement Effect Using Geostatistical Analysis in Poorly Drained Sloping Paddy Soil (경사지 배수불량 논에서 배수개선 효과의 지구통계적 기법을 이용한 평가)

  • Jung, Ki-Yuol;Yun, Eul-Soo;Park, Ki-Do;Park, Chang-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.804-811
    • /
    • 2010
  • The lower portion of sloping paddy fields normally contains excessive moisture and the higher water table caused by the inflow of ground water from the upper part of the field resulting in non-uniform water content distribution. Four drainage methods namely Open Ditch, Vinyl Barrier, Pipe Drainage and Tube Bundle for multiple land use were installed within 1-m position from the lower edge of the upper embankment of sloping alluvial paddy fields. Knowledge of the spatial variability of soil water properties is of primary importance for management of agricultural lands. This study was conducted to evaluate the effect of drainage in the soil on spatial variability of soil water content using the geostatistical analysis. The soil water content was collected by a TDR (Time Domain Reflectometry) sensor after the installation of subsurface drainage on regular square grid of 80 m at 20 m paddy field located at Oesan-ri, Buk-myeon, Changwon-si in alluvial slopping paddy fields ($35^{\circ}22^{\prime}$ N, $128^{\circ}35^{\prime}$). In order to obtain the most accurate field information, the sampling grid was divided 3 m by 3 m unit mesh by four drainage types. The results showed that spatial variance of soil water content by subsurface drainage was reduced, though yield of soybean showed the same trends. Value of "sill" of soil water content with semivariogram was 9.7 in Pipe Drainage, 86.2 in Open Ditch, and 66.8 in Vinyl Barrier and 15.7 in Tube Bundle.

Study of Motion Effects in Cartesian and Spiral Parallel MRI Using Computer Simulation (컴퓨터 시뮬레이션을 이용한 직각좌표 및 나선주사 방식의 병렬 자기공명 영상에서 움직임 효과 연구)

  • Park, Sue-Kyeong;Ahn, Chang-Beom;Sim, Dong-Gyu;Park, Ho-Chong
    • Investigative Magnetic Resonance Imaging
    • /
    • v.12 no.2
    • /
    • pp.123-130
    • /
    • 2008
  • Purpose : Motion effects in parallel magnetic resonance imaging (MRI) are investigated. Parallel MRI is known to be robust to motion due to its reduced acquisition time. However, if there are some involuntary motions such as heart or respiratory motions involved during the acquisition of the parallel MRI, motion artifacts would be even worse than those in conventional (non-parallel) MRI. In this paper, we defined several types of motions, and their effects in parallel MRI are investigated in comparisons with conventional MRI. Materials and Methods : In order to investigate motion effects in parallel MRI, 5 types of motions are considered. Type-1 and 2 are periodic motions with different amplitudes and periods. Type-3 and 4 are segment-based linear motions, where they are stationary during the segment. Type-5 is a uniform random motion. For the simulation, Cartesian and spiral grid based parallel and non-parallel (conventional) MRI are used. Results : Based on the motions defined, moving artifacts in the parallel and non-parallel MRI are investigated. From the simulation, non-parallel MRI shows smaller root mean square error (RMSE) values than the parallel MRI for the periodic (type-1 and 2) motions. Parallel MRI shows less motion artifacts for linear(type-3 and 4) motions where motions are reduced with shorter acquisition time. Similar motion artifacts are observed for the random motion (type-5). Conclusion : In this paper, we simulate the motion effects in parallel MRI. Parallel MRI is effective in the reduction of motion artifacts when motion is reduced by the shorter acquisition time. However, conventional MRI shows better image quality than the parallel MRI when fast periodic motions are involved.

  • PDF

Evaluation on Climate Change Vulnerability of Korea National Parks (국립공원의 기후변화 취약성 평가)

  • Kim, Chong-Chun;Kim, Tae-Geun
    • Korean Journal of Ecology and Environment
    • /
    • v.49 no.1
    • /
    • pp.42-50
    • /
    • 2016
  • The purpose of this study is to set the direction to manage national parks to cope with climate change, and offer basic data to establish the relevant policies. Towards this end, this study analyzed the current and future climate change vulnerability of national parks using the 24 proxy variables of vulnerability in the LCCGIS program, a tool to evaluate climate change vulnerability developed by the National Institute of Environmental Research. To analyze and evaluate the current status of and future prospect on climate change vulnerability of national parks, the proxy variable value of climate exposure was calculated by making a GIS spatial thematic map with $1km{\times}1km$ grid unit through the application of climate change scenario (RCP8.5). The values of proxy variables of sensitivity and adaptation capability were calculated using the basic statistics of national parks. The values of three vulnerability evaluation items were calculated regarding the present (2010s) and future (2050s). The current values were applied to the future equally under the assumption that the current state of the proxy variables related to sensitivity and adaptation capability without a future prediction scenario continues. Seoraksan, Odaesan, Jirisan and Chiaksan National Parks are relatively bigger in terms of the current (2010s) climate exposure. The national park, where the variation of heat wave is the biggest is Wolchulsan National Park. The biggest variation of drought occurs to Gyeryongsan National Park, and Woraksan National Park has the biggest variation of heavy rain. Concerning the climate change sensitivity of national parks, Jirisan National Park is the most sensitive, and adaptation capability is evaluated to be the highest. Gayasan National Park's sensitivity is the lowest, and Chiaksan National Park is the lowest in adaptation capability. As for climate change vulnerability, Seoraksan, Odaesan, Chiaksan and Deogyusan National Parks and Hallyeohaesang National Park are evaluated as high at the current period. The national parks, where future vulnerability change is projected to be the biggest, are Jirisan, Woraksan, Chiaksan and Sobaeksan National Parks in the order. Because such items evaluating the climate change vulnerability of national parks as climate exposure, sensitivity and adaptation capability show relative differences according to national parks' local climate environment, it will be necessary to devise the adaptation measures reflecting the local climate environmental characteristics of national parks, rather than establishing uniform adaptation measures targeting all national parks. The results of this study that evaluated climate change vulnerability using climate exposure, sensitivity and adaptation capability targeting Korea's national parks are expected to be used as basic data for the establishment of measures to adapt to climate change in consideration of national parks' local climate environmental characteristics. However, this study analyzed using only the proxy variables presented by LCCGIS program under the situation that few studies on the evaluation of climate change vulnerability of national parks are found, and therefore this study may not reflect overall national parks' environment properly. A further study on setting weights together with an objective review on more proper proxy variables needs to be carried out in order to evaluate the climate change vulnerability of national parks.