• Title/Summary/Keyword: unidirectional sintering

Search Result 10, Processing Time 0.025 seconds

Tailored Powder Composites by Freeze Drying, Electrophoretic Deposition and Sintering

  • Olevsky, Eugene A.;Wang, Xuan
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.287-288
    • /
    • 2006
  • Two approaches for the fabrication of tailored powder composites with specially distributed pore-grain structure and chemical composition are investigated. Electrophoretic Deposition (EPD) followed by microwave sintering is employed to obtain functionally graded materials (FGM) by in-situ controlling the deposition bath suspension composition. $Al_2O_3/ZrO_2$ and zeolite FGM are successfully synthesized using this technique. In order to fabricate an aligned porous structure, unidirectional freezing followed by freeze drying and sintering is employed. By controlling the temperature gradient during freezing of powder slurry, a unidirectional ice-ceramic structure is obtained. The frozen specimen is then subjected to freeze drying to sublimate the ice. The obtained capillary-porous ceramic specimen is consolidated by sintering. The sintering of the graded structure is modeled by the continuum theory of sintering.

  • PDF

Unidirectional Sintering in LTCC Substrate (LTCC 기판의 일 방향 소결)

  • Sun Yong-Bin;Ahn Ju-Hwan;Kim Seuk-Buom
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.11 no.4 s.33
    • /
    • pp.37-41
    • /
    • 2004
  • As mobile communication devices use wide bands for large data transmission, Low Temperature Co-fired Ceramic(LTCC) has been a candidate for module substrate, for it provides better electrical properties and enables various embedded passive devices compared to conventional PCB. The LTCC, however, has applied in limited area because of non-uniform shrinkage. Hybrid heating was developed to raise sample temperature uniformly in a short period of time This leads to unidirectional sintering which enables sample to be sintered layer by layer from the bottom, resulting in more stable shape of interconnection at the top surface of the sample than conventional electric furnace heating. When sintering properties of substrate and electrical/mechanical properties of interconnection were compared, hybrid heating showed possibility to be applicable to substrate miniaturization and interconnection densification superior to electric furnace heating.

  • PDF

Preparation of Porous Mullite Composites through Recycling of Coal Fly Ash (석탄회의 재활용을 통한 다공질 뮬라이트 복합체의 제조)

  • Kim, Won-Young;Ji, Hyung-Bin;Yang, Tae-Young;Yoon, Seog-Young;Park, Hong-Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.47 no.2
    • /
    • pp.151-156
    • /
    • 2010
  • Porous mullite/alumina composites have been fabricated by a freeze casting technique using TBA-based coal fly ash/alumina slurry. After sintering, unidirectional macropore channels aligned regularly along the TBA ice growth direction were developed; simultaneously, small sized micropores fromed in the outer walls of the pore channels. The physical and mechanical properties (e.g. porosity and compressive strength) of the sintered porous composites were roughly dependant of processing conditions, due to the complexity of the factors affecting them. However, with increasing solid loading and sintering temperature, the compressive strength generally increased and the porosity decreased. After sintering $1500^{\circ}C$ for 2 h, the porous specimen (porosity: 52.1%) showed a maximum compressive strength of 70.0 MPa.

Effects of the Whisker Orientation and Sintering Temperature on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 배열방향과 소결온도가 Si$_3$N$_4$ 복합체의 기계적 성질에 미치는 영향)

  • 김창원;박동수
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.5
    • /
    • pp.483-489
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 3 wt% $\beta$-Si3N4 whiskers were prepared and change of properties according to the whisker orientation and sintering temperature was studied. The tapes with whiskers were fabricated by two different method ; conventional tape casting and a modified tape casting by using guide pins,. Orientations of the whiskers were controlled by different stacking sequences of the sheets cut from the tape. Samples were fully densified by gas pressure sintering at 2148-2273K. As the sintering temperature increased size of the large elongated grains increased. In case of unidirectional samples sintering shrinkage normal to the whisker alignment direction was larger than that of parallel to the direction and the shrinkage anisotropy increased slightly as sintering temperature increased. As sintering temperature increased the crack length parallel to whisker alignment direction became shorter but that normal to the direction did not depend on sintering temperature. In case of cross-plied samples the anisotropy of mechanical properties disappeared.

  • PDF

Porous Alumina/Mullite Layered Composites with Unidirectional Pore Channels and Improved Compressive Strength (일축배향 기공채널과 향상된 압축강도를 갖는 다공질 알루미나/뮬라이트 층상 복합체)

  • Kim, Kyu Heon;Kim, Tae Rim;Kim, Dong Hyun;Yoon, Seog Young;Park, Hong Chae
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.1
    • /
    • pp.19-24
    • /
    • 2014
  • Three-layer porous alumina-mullite composites with a symmetric gradient porosity are prepared using a controlled freeze/gel-casting method. In this work, tertiary-butyl alcohol (TBA) and coal fly ash with an appropriate addition of $Al_2O_3$ were used as the freezing vehicle and the starting material, respectively. When sintered at $1300-1500^{\circ}C$, unidirectional macro-pore channels aligned regularly along the growth direction of solid TBA were developed. Simultaneously, the pore channels were surrounded by less porous structured walls. A high degree of solid loading resulted in low porosity and a small pore size, leading to higher compressive strength. The sintered porous layered composite exhibited improved compressive strength with a slight decrease in its porosity. After sintering at $1500^{\circ}C$, the layered composite consisting of outer layers with a 50 wt% solid loading showed the highest compressive strength ($90.8{\pm}3.7MPa$) with porosity of approximately 26.4%.

Effect of the Whisker Amount and Orientation on Mechanical Properties of the Si$_3$N$_4$ based Composites (Si$_3$N$_4$ Whisker의 첨가량과 배열방향이 Si$_3$N$_4$ 복합 소결체의 기계적 특성에 미치는 영향)

  • Kim, Chang-Won;Park, Dong-Soo;Park, Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.36 no.1
    • /
    • pp.43-49
    • /
    • 1999
  • Gas pressure sintered silicon nitride based composites with 0~5wt% $\beta$-Si3N4 whiskers were prepared. The whiskers were unidirectionally oriented by a modified tape casting technqiue and green bodies with various microstructure were formed by changing stacking sequences of sheets cut from the tape. Orientations of the large elongated grains of the sample after gas pressure sintering were the same as the those of the whiskers of green body, and the sintering shrinkage and mechanical properties of sintered sample were consistent with the microstructural characteristics. In case of unidirectional samples, the sintering shrinkage normal to whisker alignment direction was larger than that parallel to the direction. The shrinkage difference inceaed as the whiskercontent increaed. As whisker content increaed, the crack length normal to and parallel to tape casting direction became shorter and larger, respectively. Although the grain size increased by th whisker addition, the flexural strength of unidirectional samples was not lower than that of smaple without the whisker. In case of crossplied and 45$^{\circ}$rotated samples, the anisotropy of mechanical preoperties disappeared.

  • PDF

Fabrication and Characterization of Biphasic Calcium Phosphate Scaffolds with an Unidirectional Macropore Structure Using Tertiary-Butyl Alcohol-Based Freeze-Gel Casting Method (동결-젤 주조 공정 기반 삼차부틸알코올을 이용한 단일방향 기공구조를 가지는 이상인산칼슘 세라믹 지지체의 제조 및 특성평가)

  • Kim, Kyeong-Lok;Ok, Kyung-Min;Kim, Dong-Hyun;Park, Hong-Chae;Yoon, Seog-Young
    • Journal of the Korean Ceramic Society
    • /
    • v.50 no.4
    • /
    • pp.263-268
    • /
    • 2013
  • Porous biphasic calcium phosphate scaffolds were fabricated by a freeze-gel casting technique using a tertiary-butyl alcohol (TBA)-based slurry. After sintering, unidirectional macropore channels of scaffolds aligned regularly along the TBA ice growth direction were tailored simultaneously with micropores formed in the outer wall of the pore channels. The crystallinity, micro structure, pore configuration, bulk density, and compressive strength for the scaffolds were investigated with X-ray diffractometery, scanning electron microscopy analysis, a water immersion method, and a universal test machine. The results revealed that the sintered porosity and pore size generally resulted in a high solid loading which resulted in low porosity and small pore size, which relatively increased the higher compressive strength. After being sintered at $1100-1300^{\circ}C$, the scaffolds showed an average porosity and compressive strength in the range 35.1-74.9% and 65.1-3.0 MPa, respectively, according to the processing conditions.

Synthesis of Porous Cu-Co using Freeze Drying Process of Camphene Slurry with Oxide Composite Powders (산화물 복합분말 첨가 Camphene 슬러리의 동결건조 공정에 의한 Cu-Co 복합계 다공체 제조)

  • Lee, Gyuhwi;Han, Ju-Yeon;Oh, Sung-Tag
    • Journal of Powder Materials
    • /
    • v.27 no.3
    • /
    • pp.193-197
    • /
    • 2020
  • Porous Cu-14 wt% Co with aligned pores is produced by a freeze drying and sintering process. Unidirectional freezing of camphene slurry with CuO-Co3O4 powders is conducted, and pores in the frozen specimens are generated by sublimation of the camphene crystals. The dried bodies are hydrogen-reduced at 500℃ and sintered at 800℃ for 1 h. The reduction behavior of the CuO-Co3O4 powder mixture is analyzed using a temperature-programmed reduction method in an Ar-10% H2 atmosphere. The sintered bodies show large and aligned parallel pores in the camphene growth direction. In addition, small pores are distributed around the internal walls of the large pores. The size and fraction of the pores decrease as the amount of solid powder added to the slurry increases. The change in pore characteristics according to the amount of the mixed powder is interpreted to be due to the rearrangement and accumulation behavior of the solid particles in the freezing process of the slurry.

Microstructure Control of Porous In-situ Synthesized $Si_2N_2O-Si_3N_4$ Ceramics

  • Paul, Rajat Kanti;Lee, Chi-Woo;Kim, Hai-Doo;Lee, Byong-Taek
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2006.09a
    • /
    • pp.325-326
    • /
    • 2006
  • Using $6wt%Y_2O_3-2wt%Al_2O_3$ as sintering additives and Si as a raw powder, the continuously porous in-situ $Si_2N_2O-Si_3N_4$ bodies were fabricated by multi-pass extrusion process and their microstructures were investigated depending on the addition of carbon (0-9wt%) in the mixture powder. The introduction of $Si_2N_2O$ fibers observed in the unidirectional continuous pores as well as in the pore-frame regions of the nitrided bodies can be an effective method in increasing the filtration efficiency. In the case of no carbon addition, the network type $Si_2N_2O$ fibers with high aspect ratio appeared in the continuous pores with diameters of 150-200 nm. However, in the case of 9wt% C addition, the fibers were found without any network type and had diameters of 200-250 nm.

  • PDF

Preparation of bioactive materials by crystallization sintering (결정화 소결에 의한 생체활성재료의 제조)

  • 명중재;이안배;정용선;신건철;김호건
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.169-178
    • /
    • 1998
  • The crystal phases precipitated in various compositions glass of CaO-$SiO_2-P_2O_5$ system, were identified by XRD. E composition (CaO 49.4, $SiO_2\;36.8,\;P_2O_5$ 8.8 wt%) glass in which both apatite(($Ca_{10}(PO_4)_6O$ and $\beta$-wollastonite($CaSiO_3$) crystals would precipitate by heating, was selected as an experimental composition to prepare the glass ceramics with high bending strength and good bioactivity to the living bone. Glass powders of E composition were unidirectionally crystallized at $1050^{\circ}$C in the temperature-gadient furnace and the resultant glass ceramics were characterized. Bending strength of the glass ceramics was also measured. To investigate the bond forming ability between the glass ceramics and living bone tissue, soaking test of glass ceramics in simulated body fluid was carried out. Densed glass ceramics composed of apatite and $\beta$-wollastonite crystal were prepared by unidirectional crystallization under the optimum conditions. (2 0 2) plane of $\beta$-wollastonite crystals tended to grow perpendicularly to the crystallization direction. Average bending strength of this glass ceramics was 186.9 MPa, higher than that of the glass ceramics prepared by isothermal (not directional) crystallization In soaking test, a thin layer of apatite crystallite was formed on surface of the glass ceramics in 3 days. Apatite crystals formed on the glass ceramics could be act a role to make the chemical bond between the glass ceramics and living bone tissue.

  • PDF