• Title/Summary/Keyword: unicast/multicast

Search Result 108, Processing Time 0.027 seconds

OFDMA-Based Reliable Multicast MAC Protocol for Wireless Ad-Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo
    • ETRI Journal
    • /
    • v.31 no.1
    • /
    • pp.83-85
    • /
    • 2009
  • Compared with unicast, multicast over wireless ad-hoc networks do not support reliability due to their inability to exchange request-to-send/clear-to-send (RTS/CTS) and ACK packets with multiple recipients. Although several media access control (MAC) layer protocols have been proposed to provide reliable multicast, these introduce additional overhead, which degrades system performance. A novel MAC protocol for reliable wireless multicast is proposed in this paper. By adapting orthogonal frequency division multiple access characteristics in CTS and ACK packets, the protocol achieves reliability over wireless multicast with minimized overhead.

  • PDF

Implementation plan of eMBMS in the case of LTE-R (철도통합무선망(LTE-R) 환경에서의 eMBMS 구현방안)

  • Park, Min-ju;Won, Hong-sun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.22 no.6
    • /
    • pp.903-909
    • /
    • 2018
  • In December 2017, the world's first LTE-R for 250km/h high-speed railway was commercialized with the opening of Wonju-Gangneung high-speed railway. LTE-R has many advantages such as voice and video call, high-speed data transmission, coverage redundancy and DU redundancy. But it requires efficient use of radio resources because of a limited bandwidth of 10MHz for UL and DL, respectively. The existing unicast scheme has limited high frequency efficiency so when the number of users increases, service is limited due to the network load, which could be a problem for LTE-R in terms of stability and reliability. On the other hand, the multicast scheme via eMBMS can provide stable service even if the number of video users is high. This paper derives the number of unicast scheme users considering the LTE-R network with LAB test and calculation result, and proposes implementation plans and considerations for eMBMS commercialization on LTE-R.

A Multicast Packet Scheduling for Router Systems (라우터시스템의 Multicast 패킷 Scheduling 방법)

  • 이형섭;이상연;이형호;김환우
    • Proceedings of the IEEK Conference
    • /
    • 2001.06a
    • /
    • pp.297-300
    • /
    • 2001
  • This paper proposes a sound multicast packet-switching method which can less affect QoS degradation. The method includes a switch fabric with extra switching paths dedicated for multicast packets. Presented also are both a buffering structure and a scheduling algorithm for the proposed method. Simulation analysis for the method shows that the switching delay of unicast packets is decreased even though arrival rate of multicast packets is increased.

  • PDF

An Implementation of Explicit Multicast with Mobile IP for Small Group Communications in Mobile Networks (이동통신환경에서의 소규모 그룹통신을 위한 XMIP 프로토콜의 구현)

  • PARK IN-SOO;PARK YONG-JIN
    • The KIPS Transactions:PartC
    • /
    • v.12C no.2 s.98
    • /
    • pp.267-280
    • /
    • 2005
  • In this paper, we implement and verify XMIP integrating IETF Mobile IP and the Explicit Multicast mechanism for a great number of small group multicast communications. U a source node sends Xcast packets explicitly inserting destination nodes into the headers, each Xcast router decides routes and forwards the packets toward each destination node based on unicast routing table without the support of multicast trees. n is a straightforward and simple multicast mechanism just based on a unicast routing table without maintaining multicast states because of the inheritance from the Explicit Multicast mechanism. This research modifies and extends the functionality of IETF Mobile IP's mobility agents, such as HA/FA to HA+/FA+ respectively, considering interworking with Xcast networks. Xcast packets captured by HA+ are forwarded into X-in-X tunnel interfaces for each FA+ referred to the binding table of HA.. This X-in-X tunneling mechanism can effectively solve the traffic concentration problem of IETF Mobile IP multicast services. Finally WLAN-based testbed is built and a multi-user Instant messenger system is developed as a Xcast application for finally verify the feasibility of the implemented XMIP/Xcast protocols.

A Novel Optimization-Based Approach for Minimum Power Multicast in Wireless Networks

  • Yen, Hong-Hsu;Lee, Steven S.W.;Yap, Florence G.H.
    • Journal of Communications and Networks
    • /
    • v.13 no.1
    • /
    • pp.26-31
    • /
    • 2011
  • In this paper, we formulate the minimum power multicast problem in wireless networks as a mixed integer linear programming problem and then propose a Lagrangean relaxation based algorithm to solve this problem. By leveraging on the information from the Lagrangean multiplier, we could construct more power efficient routing paths. Numerical results demonstrate that the proposed approach outperforms the existing approaches for broadcast, multicast, and unicast communications.

Utilizing Multicasts Routers for Reliability in On-Line Games (온라인 게임에서 신뢰성 확보를 위한 멀티캐스트 라우터의 활용)

  • Doo, Gil-Soo;Lee, Kwang-Jae;Seol, Nam-O
    • Journal of Korea Game Society
    • /
    • v.2 no.1
    • /
    • pp.23-29
    • /
    • 2002
  • Multicast protocols are efficient methods of group communication such as video conference, Internet broadcasting and On-Line Game, but they do not support the various transmission protocol services like a reliability guarantee, FTP, or Telnet that TCPs do. The Purpose or this Paper is to find a method to utilize multicast routers can simultaneously transport multicast packets and TCP packets. For multicast network scalability and error recovery the existing SRM(Scalable Reliable Multicast)method has been used. Three packets per TCP transmission control window site are used for transport and an ACK is used for flow control. A CBR(Constant Bit Rate) and a SRM is used for UDP traffic control. Divided on whether a UDP multicast packet and TCP unicast packet is used simultaneously or only a UDP multicast packet transport is used, the multicast receiver with the longest delay is measured on the number of packets and its data receiving rate. It can be seen that the UDP packet and the TCP's IP packet can be simultaneously used in a server router.

  • PDF

A Scheduling Method for QoS Switching of Multicast Packet (Multicast 패킷의 QoS 스위칭을 위한 스케쥴링 방법)

  • 이형섭;김환우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.26 no.11C
    • /
    • pp.123-132
    • /
    • 2001
  • This paper proposes a sound multicast packet-switching method which can less affect QoS(Quality of Service) degradation. The method includes a switch fabric with extra switching paths dedicated f()r multicast packets. Presented also are both a buffering structure and a scheduling algorithm for the proposed method. Simulation analysis for the method shows that the switching delay of unicast packets is decreased even though arrival rate of multicast packets is increased.

  • PDF

MAC Protocol for Reliable Multicast over Multi-Hop Wireless Ad Hoc Networks

  • Kim, Sung-Won;Kim, Byung-Seo;Lee, In-Kyu
    • Journal of Communications and Networks
    • /
    • v.14 no.1
    • /
    • pp.63-74
    • /
    • 2012
  • Multicast data communication is an efficient communication scheme, especially inmulti-hop ad hoc networks where the media access control (MAC) layer is based on one-hop broadcast from one source to multiple receivers. Compared to unicast, multicast over a wireless channel should be able to deal with varying channel conditions of multiple users and user mobility to provide good quality to all users. IEEE 802.11 does not support reliable multicast owing to its inability to exchange request-to-send/clear-to-send and acknowledgement packets with multiple recipients. Thus, several MAC layer protocols have been proposed to provide reliable multicast. However, additional overhead is introduced, as a result, which degrades the system performance. In this paper, we propose an efficient wireless multicast MAC protocol with small control overhead required for reliable multicast in multi-hop wireless ad hoc networks. We present analytical formulations of the system throughput and delay associated with the overhead.

An enhanced unicast of ODMRP scheme for Ad-hoc Networks (Ad-hoc 망에서 유니캐스트 성능 향상을 위한 개선된 ODMRP)

  • 백경호;박재우;이제원;이균하
    • Proceedings of the IEEK Conference
    • /
    • 2003.07a
    • /
    • pp.157-160
    • /
    • 2003
  • ODMRP is protocol that support multicast and unicast in Ad-hoc network. When some one node must transmit data by unicast way in this ODMRP, must pass through periodic flooding process to find a path and overhead happens thereby. Our scheme stores the found path into the table in a unicast mode and, when the node sends data, it refers to the DR FG table so that reduces the traffic caused by control packets(JOIN QUERY, JOIN REPLY) of a receiver node, while source/destination nodes flood periodic control packets to look for a path in ODMRP. We present that our scheme is much more improved on the time of looking for a path than existing ODMRP methods by means of the simulation.

  • PDF

Optimization-Based Congestion Control for Internet Multicast Communications

  • Thu Hang Nguyen Thi;Erke Taipio
    • Proceedings of the IEEK Conference
    • /
    • summer
    • /
    • pp.294-301
    • /
    • 2004
  • This paper presents a combination of optimization concept and congestion control for multicast communications to bring best benefit for the network. For different types of Internet services, there will be different utility functions and so there will be different ways to choose on how to control the congestion, especially for real time multicast traffic. Our proposed algorithm OMCC brings the first implementation experiment of utility-based Multicast Congestion Control. Simulation results show that OMCC brings better network performances in multicast session throughput while it still keeps a certain fairness of unicast and multicast sessions, and thus, provides better benefit for all network participants.

  • PDF