• Title/Summary/Keyword: uniaxial test

Search Result 713, Processing Time 0.032 seconds

Evaluation of Rock Uniaxial Compressive Strength Using Ultrasonic Velocity (초음파 속도를 이용한 암석의 일축압축강도 평가)

  • Baek, Seung-Cheol;Kim, Yong-Tae;Kim, Hong-Taek;Yoon, Jun-Sig;Lee, Yun-Gyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.2
    • /
    • pp.33-42
    • /
    • 2006
  • Eighteen biotite granites on Andong area and twenty seven igneous rocks(diorite, granite, andesite, rhyolite) on Yeosu area were tested to evaluate the correlations between the uniaxial compressive strength values, as determined by the standard uniaxial compression test, and the corresponding results of the ultrasonic velocity. The variability of test results for each test was evaluated by calculating the coefficient of determination or variation. Results indicate that strong correlations exist between the results of uniaxial compression vs the point load, Schmidt hammer and ultrasonic velocity test. The correlation equations for predicting compressive strength using different methods are presented along with their confidence limits. Ultrasonic velocity test used provide reliable estimates of compressive strength.

  • PDF

Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression (고강도 콘크리트의 일축 및 이축 압축하의 파괴거동)

  • Lee, Sang-Kuen;Song, Young-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

Effects of Friction Coefficient on Creep Life Assessment of Sheet (박판 크리프 수명평가에 마찰계수의 영향)

  • Jeong, J.Y.;Im, J.W.;Keum, Y.T.
    • Transactions of Materials Processing
    • /
    • v.19 no.7
    • /
    • pp.435-440
    • /
    • 2010
  • The creep life of 9Cr1MoVNb steel, in terms of Larson-Miller parameter(LMP), was evaluated by small punch(SP) creep simulation and verified by uniaxial creep test. By employing the elastoplastic FEM(finite element method), the small punch creep behaviors associated with various friction coefficients were simulated to identify a real friction phenomena. The friction coefficient, ${\mu}$=0.7, determined by comparing deflection history was used in the small punch creep simulation to find the equivalent stresses with which the relationship between punch load and uniaxial creep stress was found. The creep life was then predicted by the LMP, which was the relationship among the rupture time, temperature, and stress. Finally, the LMP calculated by SP-creep simulation was compared with that had computed by the uniaxial creep test and fairly matched LMPs were found.

The Experimental Comparison of the Uniaxial and Biaxial Tensile Strengths of Concretes (일축 및 이축 휨인장강도의 실험적 비교)

  • Oh, Hong-Seob;Zi, Goang-Seup
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.139-146
    • /
    • 2008
  • The characteristics of the biaxial flexural tensile strength of concretes was compared to that of the uniaxial strength. The uniaxial and biaxial strengths in this study were obtained from the classical modulus of rupture test and the biaxial flexural test recently developed by Zi and Oh and Zi et al., respectively. Three different sizes were considered to investigate the effect of the size of aggregates. To estimate the stochastic aspect of the strength, 32 specimens were used for each test. The average biaxial flexural fracture strength was about 20% greater than the uniaxial test. At the same time, the coefficient of variation for the biaxial test was 18% greater than the uniaxial test. This means that the probability of the biaxial cracking can be greater than the uniaxial cracking.

Stress corrosion index of Kumamoto andesite estimated from two types of testing method

  • Jeong Hae-Sik;Nara Yoshitaka;Obara Yuzo;Kaneko Katsuhiko
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.221-228
    • /
    • 2003
  • The stress corrosion index of Kumamoto andesite are evaluated by two types of testing method. One is the uniaxial compression test under various water vapor pressures, and the other is the double torsion (DT) test under a constant water vapor pressure. For the uniaxial compression tests, the uniaxial compressive strength increases linearly with decreasing water vapor pressure on the double logarithmic coordinates. As the results, the stress corrosion index obtained is estimated 44. On the other hand, in the DT test, the relaxation (RLX) test and the constant displacement rate (CDR) test were conducted. For the CDR test, as the displacement rate of loading point increases, the crack velocity increases. However, the fracture toughness is constant regardless of the change in displacement rate and the average fracture toughness is evaluated $2.07MN/m^{3/2}$. For the RLX test, the crack velocity-stress intensity factor curves are smooth and linear. The stress corrosion index estimated from the curves is 37. Comparing stress corrosion indexes in the uniaxial compression test and the DT test, there is no significant difference in these values, and they are considered to be in coincident each other regardless of testing methods. Therefore, it is concluded that stress corrosion is one of material constants of rock.

  • PDF

Evaluation of Residual Strength in Damaged Brittle Materials (취성재료의 손상후 잔류강도 평가)

  • Sin, Hyeong-Seop;O, Sang-Yeop;Seo, Chang-Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.5
    • /
    • pp.932-938
    • /
    • 2002
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are usually subjected to multiaxial stress state. Brittle materials with cracks or damage by foreign object impacts are apt to fracture abruptly from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength of structural members with damage has been tested under uniaxial stress condition such as the 4-point bend test. Depending upon the crack pattern developed, the strength under multiaxial stress state might be different from the one under uniaxial. A comparative study was carried out to investigate the influence of stress state on the residual strength evaluation. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test, when a small size indendation crack was introduced. In the case that crack having an angle of 90deg. to the applied stress direction, the ratio of biaxial to uniaxial flexure strength was about 1.12. The residual strength was different from crack angles to loading direction when it was evaluated by the 4-point bend test. The ratio of residual strength of 45deg. crack to 90deg. one was about 1.20. In the case of specimen cracked by a spherical impact, it was shown that an overall decrease in flexure strength with increasing impact velocity, and the critical impact velocity for formation of a radial and/or cone crack was about 30m/s. In those cases that relatively large cracks were developed as compared with the case of indented cracks, the ratio of residual strength under biaxial stress state to one uniaxial became small.

Relationship Between Small-punch Creep Test Data and Uniaxial Creep Test Data based on the Monkman-Grant Relation (몽크만·그랜트관계에 기초한 소형펀치 크리프시험 데이터와 일축 크리프시험 데이터의 관계)

  • Kim, Bum Joon;Sohn, Ilseon;Lim, Byeong Soo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.8
    • /
    • pp.809-814
    • /
    • 2013
  • The relationship between the small-punch creep test and the conventional creep test was investigated experimentally using a method similar to that of the Monkman-Grant relationship. Uniaxial and small-punch creep rupture tests were carried out on 9Cr-2W ferritic steel (Commercial Grade 92 steel: X10CrWMoVNb 9-2) at elevated temperatures. From the relation derived in the same manner as the Monkman-Grant relation, a correlation between the displacement rate in response to the small-punch creep test and the strain rate in the uniaxial creep test was found, and the creep life was calculated using this relation. Furthermore, the failure modes of the small punch creep test specimens were investigated to show that the fracture was caused by creep.

Laboratory experiment on the assessment of the ground strength with corestone (실내실험을 통한 핵석지반의 강도정수 산정연구)

  • 이수곤;김동은;황의성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

Evaluation of Residual Strength in Damaged Brittle Materials (취성재의 손상후 잔류강도 평가)

  • Oh, Sang-Yeob;Shin, Hyung-Seop;Suh, Chang-Min
    • Proceedings of the KSME Conference
    • /
    • 2001.11a
    • /
    • pp.137-142
    • /
    • 2001
  • In structural applications, brittle materials such as soda-lime glasses and ceramics are often subjected to multiaxial stress. Brittle materials with crack or damaged by foreign object impacts are abruptly fractured from cracks, because of their properities of very high strength and low fracture toughness. But in most cases, the residual strength has been derived from tests under uniaxial stress such as a 4-point bend test. The strengths under multiaxial stresses might be different from the strength. In comparable tests, the residual strength under biaxial stress state by the ball-on-ring test was greater than that under the uniaxial one by the 4-point bend test. In the case that crack having 90deg. to loading direction, the ratio of biaxial to uniaxial flexure strength was 1.12. At a different crack angle to loading direction when it was evaluated by the 4-point bend test, the residual strength was different and the ratio of 45deg. to 90deg. was 1.16.

  • PDF

Estimation of Uniaxial Compressive Strength and Elastic Modulus from Brazilian Test (Brazilian시험을 이용한 일축압축강도와 탄성계수의 추정(II))

  • Min, Tuk-Ki;Moon, Jong-Kyu;Ro, Jai-Sool
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.8
    • /
    • pp.65-76
    • /
    • 2009
  • Little attention has been paid to Brazilian test for the estimation of uniaxial compressive strength and elastic modulus of rocks as an indirect method despite high availability of civil engineering parameters. This paper employed Brazilian test value to estimate two parameters of igneous rocks (granite, andesite, rhyolite) of Korea. High reliability of Brazilian test has been supported by the conclusions drawn from point load test and Schmidt hammer strike values. It has also been found that this method can be applied easily and rapidly to the estimation of uniaxial compressive strength and elastic modulus of rock cores when direct tests are not available.