• Title/Summary/Keyword: uniaxial compression strength

Search Result 318, Processing Time 0.032 seconds

Investigation of the effects of particle size and model scale on the UCS and shear strength of concrete using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Lazemi, Hossein Ali
    • Structural Engineering and Mechanics
    • /
    • v.67 no.5
    • /
    • pp.505-516
    • /
    • 2018
  • In this paper, the effects of particle size and model scale of concrete has been investigated on the failure mechanism of PFC2D numerical models under uniaxial compressive test. For this purpose, rectangular models with same particle sizes and different model dimensions, i.e., $3mm{\times}6mm$, $6mm{\times}12mm$, $12mm{\times}24mm$, $25mm{\times}50mm$ and $54mm{\times}108mm$, were prepared. Also rectangular models with dimension of $54mm{\times}108mm$ and different particle sizes, i.e., 0.27 mm, 0.47 mm, 0.67 mm, 0.87 mm, 1.07 mm, 1.87 mm and 2.27 mm were simulated using PFC2D and tested under uniaxial compressive test. Concurrent with uniaxial test, direct shear test was performed on the numerical models. Dimension of the models were $75{\times}100mm$. Two narrow bands of particles with dimension of $37.5mm{\times}20mm$ were removed from upper and lower of the model to supply the shear test condition. The particle sizes in the models were 0.47 mm, 0.57 mm, 0.67 mm and 0.77 mm. The result shows that failure pattern was affected by model scale and particle size. The uniaxial compressive strength and shear strength were increased by increasing the model scale and particle size.

Creep characteristics and instability analysis of concrete specimens with horizontal holes

  • Xin, Yajun;Hao, Haichun;Lv, Xin;Ji, Hongying
    • Computers and Concrete
    • /
    • v.22 no.6
    • /
    • pp.563-572
    • /
    • 2018
  • Uniaxial compressive strength test and uniaxial compression creep one were produced on four groups of twelve concrete specimens with different hole number by RLW-2000 rock triaxial rheology test system. The relationships between horizontal holes and instantaneous failure stress, the strain, and creep failure stress, the strain, and the relationships between stress level and instantaneous strain, creep strain were studied, and the relationship between horizontal holes and failure mode was determined. The results showed that: with horizontal hole number increasing, compressive strength of the specimens decreased whereas its peak strain increased, while both creep failure strength and its peak strain decreased. The relationships between horizontal holes and compressive strength of the specimens, the peak strain, were represented in quadratic polynomial, the relationships between horizontal holes and creep failure strength, the peak strain were represented in both linear and quadratic polynomial, respectively. Instantaneous strain decreased with stress level increasing, and the more holes in the blocks the less the damping of instantaneous strain were recorded. In the failure stress level, instantaneous strain reversally increased, creep strain showed three stages: decreasing, increasing, and sharp increasing; in same stress level, the less holes the less creep strain rate was recorded. The compressive-shear failure was produced along specimen diagonal line where the master surface of creep failure occurred, the more holes in a block, the higher chances of specimen failure and the more obvious master surface were.

Probabilistic Strength at Serviceability Limit State for Normal and SBHS Slender Stiffened Plates Under Uniaxial Compression

  • Rahman, Mahmudur;Okui, Yoshiaki;Anwer, Muhammad Atif
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1397-1409
    • /
    • 2018
  • Stiffened plates with high slenderness parameters show large out-of-plane deflections, due to elastic buckling, which may occur before the plates reach their ultimate strength. From a serviceability point of view, restriction of out-of-plane deflections exceeding the fabrication tolerance is of primary importance. Compressive strength at the serviceability limit state (SLS) for slender stiffened plates under uniaxial stress was investigated through nonlinear elasto-plastic finite element analysis, considering both geometric and material nonlinearity. Both normal and high-performance steel were considered in the study. The SLS was defined based on a deflection limit and an elastic buckling strength. Probabilistic distributions of the SLS strengths were obtained through Monte Carlo simulations, in association with the response surface method. On the basis of the obtained statistical distributions, partial safety factors were proposed for SLS. Comparisons with the ultimate strength of different design codes e.g. Japanese Code, AASHTO, and Canadian Code indicate that AASHTO and Canadian Code provide significantly conservative design, while Japanese Code matches well with a 5% non-exceedance probability for compressive strength at SLS.

An Experimental Study for Strength Improvement of Soft Ground using Hardening Agent and Silicate Mineral Power (수용성 고화재와 규산염광물 결합재를 활용한 지반개량재의 실험적 연구)

  • Kim, Sung-Wook;Choi, Eun-Kyeong;Cho, Jinwoo;Lee, JuHyung;Lee, Kyu-Hwan
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.8-15
    • /
    • 2015
  • The demand for environmental consideration is on the increase in civil engineering. This study focuses on the development of technology to reduce the use of carbonate cement and improve its performance by using a silicate mineral and hardening agents, and presents the test results for the demonstrative evaluation of the properties of the raw material. Highly active feldspar was used as a binder to augment the bonding of the carbonate cement, and their change in strength was observed after test piece construction with the addition of soluble hardening agent. The uniaxial compression strength of the test piece of the general Portland cement with the addition of 0.5% soluble hardening agent, showed an increase by 33% and that of the test piece of cement with the addition of 70% substituted with feldspar increased by 28%. The strength of viscous soil; classified as soft ground, showed an increase of a maximum of 1.7 times when it was mixed with cement and solidifier depending on the curing period. These tests confirmed that a soluble solidifier is effective for improving the strength of a cement binder and that the highly active feldspar can be used as a binder.

Investigation on Shape Effect of Rock Specimens to Uniaxial Compressive Strength and Modification of Performance Prediction Model of a Roadheader (일축압축강도에 미치는 암석시편의 형상효과 고찰 및 로드헤더 굴진율 예측모델 수정)

  • Kim, Mun-Gyu;Lee, Sang-Min;Cho, Jung-Woo;Choi, Sung-Hyun;Eom, Jun-Won
    • Tunnel and Underground Space
    • /
    • v.31 no.6
    • /
    • pp.440-459
    • /
    • 2021
  • Roadheaders have begun to be adopted in Korean tunneling sites. The performance prediction models proposed by the manufacturer are used by Korean construction companies. The models use UCS (uniaxial compressive strength) value to predict the net cutting rate, but the rock specimens conducted for the uniaxial compression test have 1.0 of the diameter to length ratio. It has been reported that the specimen shape generally influences the rock strength. The previous references studying the shape effect were cited, and the UCS data of Korean rocks are also updated to analyze the shape effect on UCS. The cause of effect was discussed by previous theory. The change amount of UCS values of Korean rocks was estimated by the data, and the modified prediction model for NCR was finally suggested.

An Experimental Study on the Elastic Modulus of Deep Mixing Ground Specimen (심층혼합 시료의 탄성계수에 관한 실험적 연구)

  • Park, Choon-Sik;Park, Hwan-Ki
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.10
    • /
    • pp.39-49
    • /
    • 2018
  • In this study, aimed at determining the elastic modulus of deep mixed samples, 320 test specimens were developed by mixing 8%, 10%, 12%, and 14% of stabilizer mixture in the granular conditions of clay, sand and gravel. Uniaxial compression tests were carried out using these specimens, and the uniaxial compression strength and strain were analyzed to determine the secant elastic modulus and tangent elastic modulus. Laboratory test results showed that the uniaxial compression strength of all deep mixed samples increased with increasing curing time and stabilizer mixing ratio, and that the secant elastic modulus and the tangen elastic modulus also increased. The increase of the elastic modulus according to the curing period turned out greater in the tangent elastic modulus than in the secant elastic modulus. In order to measure elastic modulus with changes in stabilizer mixing ratio, the correlation coefficient between the elastic modulus for stabilizer mixing ratio of 8% and that of 10%, 12% and 14% was calculated respectively by the specimen condition. The elastic modulus tended to increase as the grain size in a deep mixed specimen increased. The distribution of grain size that had the greatest effect appeared when the composition ratio of sand was high. On the other hand, the increase in the elastic modulus was larger in the sand specimens than in the clay and gravel specimens. Based on these results, it is suggested that a pertinent soil parameter of the deep mixed ground in the field may be obtained by the particle size distribution and the mixing ratio of stabilizer of the deep mixed soil.

Applicability of exponential stress-strain models for carbonate rocks

  • Palchik, Vyacheslav
    • Geomechanics and Engineering
    • /
    • v.15 no.3
    • /
    • pp.919-925
    • /
    • 2018
  • Stress-strain responses of weak-to-strong carbonate rocks used for tunnel construction were studied. The analysis of applicability of exponential stress-strain models based on Haldane's distribution function is presented. It is revealed that these exponential equations presented in transformed forms allow us to predict stress-strain relationships over the whole pre-failure strain range without mechanical testing of rock samples under compression using a press machine and to avoid measurements of axial failure strains for which relatively large values of compressive stress are required. In this study, only one point measurement (small strain at small stress) using indentation test and uniaxial compressive strength determined by a standard Schmidt hammer are considered as input parameters to predict stress-strain response from zero strain/zero stress up to failure. Observations show good predictive capabilities of transformed stress-stress models for weak-to-strong (${\sigma}_c$ <100 MPa) heterogeneous carbonate rocks exhibiting small (< 0.5 %), intermediate (< 1 %) and large (> 1 %) axial strains.

A Study on the Geotechnical Charateristics of Corestone Ground Mass (핵석 지반의 공학적 특성 연구)

  • Lee, Su-Gon;Kim, Dong-Eun;Lee, Chun-Young;Kim, Jae-Heun;Yang, Hong-Suk
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.7 no.1
    • /
    • pp.68-76
    • /
    • 2004
  • Corestone ground mass has complicated characteristics as it is made up of hard and stiff corestone in a relatively weak and soft matrix. Model corestone ground mass whichis physically identical with the stiff corestone in weak matrix were tested in uniaxial compression. The tests showthat the increase of the corestone proportion brought the gradual increase of the elastic modulus as well. The ground mass was weaker when the corestone proportion was low while it was stronger in higher corestone proportion. The size of the corestone had no influence on the strength and elastic modulus as long as the proportion of the corestone remains same.

A STUDY ON THE STRENGTHS AND DEFORMATION BEHAVIOURS OF ROCKS UNDER VARIOUS LOADING RATES (하중속도가 암석의 강도 및 변형특성에 미치는 영향에 관한 연구)

  • Kang, Moon-Gu;Kim, Jaedong;Lim, Han-Uk
    • Journal of Industrial Technology
    • /
    • v.10
    • /
    • pp.57-67
    • /
    • 1990
  • Uniaxial compression tests are performed under various loading rates to study the influence of loading rate on the compressive strengths and deformation behaviours. The rock samples adopted in this experiments are Onyang granite, Hambaek sandstone, Hambaek shale and Donghae limestone. Total 120 specimens are prepared for this study. As the loading rate increases from static to dynamic state which is about the level of $800{\sim}1,400kgf/cm^2/sec$, the uniaxial compressive strengths are also increased within the range of 40%. And Young's modulus and Poisson's ratio show similar trends but have a little lower rates of increase when compared with that of uniaxial compressive strength.

  • PDF

Spring-back Prediction of DP980 Steel Sheet Using a Yield Function with a Hardening Model (항복함수 및 경화모델에 따른 DP980 강판의 스프링백 예측)

  • Kim, J.H.;Kang, G.S.;Lee, H.S.;Kim, J.H.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.25 no.3
    • /
    • pp.189-194
    • /
    • 2016
  • In the current study, spring-back of DP980 steel sheet was numerically evaluated for U-bending using a yield function with a hardening model. For spring-back prediction, two types of yield functions - Hill'48 and Yld2000-2d - were considered. Additionally, isotropic hardening and the Yoshida-Uemori model were used to investigate the spring-back behavior. The parameters for each model were obtained from uniaxial tension, uniaxial tension-compression, uniaxial tension-unloading and hydraulic bulging tests. The numerical simulations were performed using the commercial software, PAM-STAMP 2G. The results were compared with experimental data from a U-bending process.