• Title/Summary/Keyword: uniaxial compression strength

Search Result 315, Processing Time 0.029 seconds

Shear behavior of non-persistent joints in concrete and gypsum specimens using combined experimental and numerical approaches

  • Haeri, Hadi;Sarfarazi, V.;Zhu, Zheming;Hokmabadi, N. Nohekhan;Moshrefifar, MR.;Hedayat, A.
    • Structural Engineering and Mechanics
    • /
    • v.69 no.2
    • /
    • pp.221-230
    • /
    • 2019
  • In this paper, shear behavior of non-persistent joint surrounded in concrete and gypsum layers has been investigated using experimental test and numerical simulation. Two types of mixture were prepared for this study. The first type consists of water and gypsum that were mixed with a ratio of water/gypsum of 0.6. The second type of mixture, water, sand and cement were mixed with a ratio of 27%, 33% and 40% by weight. Shear behavior of a non-persistent joint embedded in these specimens is studied. Physical models consisting of two edge concrete layers with dimensions of 160 mm by 130 mm by 60 mm and one internal gypsum layer with the dimension of 16 mm by 13 mm by 6 mm were made. Two horizontal edge joints were embedded in concrete beams and one angled joint was created in gypsum layer. Several analyses with joints with angles of $0^{\circ}$, $30^{\circ}$, and $60^{\circ}$ degree were conducted. The central fault places in 3 different positions. Along the edge joints, 1.5 cm vertically far from the edge joint face and 3 cm vertically far from the edge joint face. All samples were tested in compression using a universal loading machine and the shear load was induced because of the specimen geometry. Concurrent with the experiments, the extended finite element method (XFEM) was employed to analyze the fracture processes occurring in a non-persistent joint embedded in concrete and gypsum layers using Abaqus, a finite element software platform. The failure pattern of non-persistent cracks (faults) was found to be affected mostly by the central crack and its configuration and the shear strength was found to be related to the failure pattern. Comparison between experimental and corresponding numerical results showed a great agreement. XFEM was found as a capable tool for investigating the fracturing mechanism of rock specimens with non-persistent joint.

The Correlation Between RMR and Deformation Modulus by Rock masses using Pressuremeter (공내재하시험을 이용한 암종별 변형계수와 RMR의 상관성)

  • Ahn, Taebong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.1
    • /
    • pp.5-12
    • /
    • 2011
  • In this study, correlation between measured deformation modulus using pressuremeter and RMR value conducted in 10 sites is analyzed, and applicability of the conventional empirical formulas to the rock masses in Korea are analyzed, It is found that if RMR is below 40, the correlation between deformation modulus and RMR accords Kim Gyo-won's formula and Aydan, Serafim and Pereira's one well, but if the RMR exceeds 40, the correlation was lower than those from the formula. Such results may be attribute to the fact that during classification of RMR, scores are weighed relatively more in joint conditions and apertures than such highly correlational items as uniaxial compression strength or RQD, and RMR would not be evaluated qualitatively due to different weathering degrees and rock mass types as well as engineers' personal errors. Sandstone among sedimentary rocks are quite well accord with suggested equation, but correlation of other rocks are due to large variance. In this study, correlation expressions of various rocks are proposed as the function of exponential based on the field test data.

Reactivity Improvement Characteristics of Weathered Feldspar through Activation Technique (활성기법을 통한 풍화된 장석의 반응성 개선 특성)

  • Cho, Jinwoo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.20 no.4
    • /
    • pp.33-41
    • /
    • 2021
  • Feldspar, along with Quartz, are the most frequently produced minerals in Korea; however, the potential value is estimated to be significantly low because of the scarce research on the development and application of material properties, except for their limited use in manufacturing minerals, glass, and paints. In this study, we analyzed the eco-friendly material and reactivity improvement characteristics of weathered feldspar through activation technique. The joint structural features observed on the surface of the weathered feldspar show that the joint arrangements are irregularly distributed, and the cavities are interconnected. Due to the irregularly connected cavities on the surface of weathered feldspar, the reaction area of the weathered feldspar is increased; hence the weathered feldspar is considered as a highly reactive pozzolan material when combined with cement. As a result of applying the thermal, mechanical, and chemical activation techniques to improve the functionality of the weathered feldspar, the cation exchange capacity, density, and uniaxial compression strength characteristics were improved. It is considered that weathered feldspar by these porous characteristics can be used as an eco-friendly construction material with excellent physical and chemical properties.

Analysis of the Physical and Mechanical Properties of Injected High-Density Polyurethane from Laboratory Experiments and Field Tests (실내실험 및 현장실험을 통한 고밀도 폴리 우레탄 공법의 물리·역학적 특성 분석)

  • Choi, Junyoung;Kim, Daehyeon
    • The Journal of Engineering Geology
    • /
    • v.31 no.1
    • /
    • pp.83-101
    • /
    • 2021
  • The high-density polyurethane method uses the instantaneous expansion pressure of injected material to stabilize soft ground, allowing reinforcement, restoration, and construction to be carried out in suboptimal ground conditions. Under normal and, even poor conditions, the method is easily applied because the working time is very short. The method is environmentally friendly and results have excellent durability. The purpose of this study was to verify the physical and mechanical properties of high-density polyurethane in the ground. Initial testing of strength, direct shear, and soil environment stability was followed by testing for permeability in order to address environmental concerns. The results of the experiments showed that the internal friction angle was about twice as high and the adhesion was about 2.5 to 3.5 times higher than for dense and hard clay, and that the permeability factor was significantly lower compared with the existing grouting method, within the range of 1.0 × 10-5.

Behaviour of Geobag Well System Using Recycled Waste Concrete (폐콘크리트를 이용한 지오백 옹벽의 거동특성 평가)

  • Kim Jin-Man;Lee Dae-Young;Joo Tae-Sung;Lee June-Keun;Paik Young-Shik;Han Sang-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.39-45
    • /
    • 2006
  • A field instrumentation for a recycled waste concrete geobag wall was performed to investigate the performance of the geobag wall, and uniaxial compression tests for a recycled waste concrete geobag were executed in laboratory. The strength of a recycled waste concrete geobag, the lateral earth pressure of a geobag wall, the horizontal deflection of a geobag wall, and the deformation of a backfill in geobag wall are mainly evaluated in this study. Based on the results of analysis on the measurements, it was found that the geobag wall displacement was within the recommendation for mechanically stabilized earth walls. It was also found that the use of a recycled waste concrete in geobag wall provides economical benefit, construction easiness, and good performance.

Development of Simple Construction Method for Curbs and L-Type Gutter (경계석과 L형 측구의 간편 시공법 개발)

  • Paik, Kyu Ho;Shin, Young Ok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.6D
    • /
    • pp.961-968
    • /
    • 2006
  • Curbs and L-type gutters installed at the edge of a road are very important structures to protect pedestrians from traffic accidents and to restraint slip of cars due to rain. However, existing construction method where great parts of the construction progress are done by human power has many problems in workability, quality and cost etc. In this paper, a new construction method for improvement in workability and quality for curbs and L-type gutters is developed. In order to investigate the structural safety and quality of curbs and gutters installed by the new method, tensile and lateral load tests are performed on curbs installed by existing and new methods and uniaxial compression tests are also performed on concrete samples of gutters constructed by existing and new methods. The test results show that the alignment of curbs and the strength of gutter concrete are very much improved by applying the new method. The tensile and lateral load capacities of the curbs installed by the new method are 10.7 and 2.5 times higher than those of curbs by existing method, respectively.

Comparison of the Characteristics of Mix Design and the Performance of Shotcrete Used in Expressway Tunnel Construction Sites (고속도로 터널 숏크리트 현장배합 특성 및 성능 비교 연구)

  • Lee, Sangdon
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.532-541
    • /
    • 2019
  • Even though shotcrete is a main support for securing the stability of tunnel, the performance of shotcrete is not properly checked due to various difficulties arisen from the characteristics of materials themselves which constitute shotcrete, such as steel fibers and accelerators, and the on-site quality control. In this study, the actual conditions of shotcrete applied to expressway tunnel construction sites were tried to find out, and then some improvement was tried to derive. For this purpose, the characteristics of steel fibers and accelerators supplied to the expressway construction sites were investigated. Also, shotcrete specimens were prepared at the tunnel sites and performance tests were carried out. For steel fiber, domestic production states were investigated, and carbon content and tensile strength were measured using the steel fibers collected in the construction sites. For three types of accelerators such as aluminate, cement mineral and alkali-free, basic properties and total amount of alkali contents were analyzed. Shotcrete specimens were prepared using on-site shotcrete machine with regard to mix designs and types of accelerators. Using these specimens, uniaxial compression tests and flexural tests were performed. As the results, compressive strength, flexural strength, flexural toughness, and etc. were compared with types of acclerators and mix designs.

Improvement Method of Sand Ground Using an Environmental Friendly Bio-grouting Material (친환경 바이오그라우팅을 이용한 모래지반 개량 공법)

  • Kim, Dae-Hyeon;Sagong, Myung;Park, Kyung-Ho
    • Journal of the Korean Society for Railway
    • /
    • v.16 no.6
    • /
    • pp.473-481
    • /
    • 2013
  • The purpose of this research is to evaluate the improvements in the strength and injection range of loose ground after injecting $CaCO_3$(created by microorganism reaction). For this purpose, three cases of single-layer (Sand, SP, SW) specimens were made in a 150mm D ${\times}$ 200mm H space and two cases of multi-layer specimens (SW/SP, SP/SW) were made in a 150mm D ${\times}$ 300mm H space. The specimens were made with a relative density of 30% of soft ground and an injection was given over a time of one day. The uniaxial compression strength was measured with a cone penetrometer and the injection range was observed by checking the bulb formation around the injection nozzle. Also, the compositions of the specimens were assessed through XRD analyses. Based on the test results, a compressive strength of 500kPa and 15cm thick cementation were noted due to the cementation of the soil. This implies that there are significant effects of the pore condition and size on bio-grouting technology.

A Study on the Frictional Resistance Chracteristics of Pressurized Soil Nailing Using Rapid Setting Cement (초속경 시멘트를 사용한 가압식 쏘일네일링의 주입시간에 따른 마찰저항특성에 관한 연구)

  • Lee, Arum;Shin, Eunchul;Lee, Chulhee;Rim, Yongkwan
    • Journal of the Korean Geosynthetics Society
    • /
    • v.17 no.4
    • /
    • pp.1-10
    • /
    • 2018
  • Although the soil nailing method is generally used as a gravity grouting, the development and application of pressurized grouting method has recently increased to address the problem of joint generation and filling due to grouting. Pressurized grouting of the soil nailing method is generally used in combination with ordinary portland cement and water. In the field, the cement is mixed with the rapid setting cement to reduce curing time because ordinary portland cement takes more than 10 days to satisfy the required strength. In this study, uniaxial compression tests and laboratory tests were carried out to confirm the efficiency of the grouting material according to the mixing ratio of rapid setting cement. The mixing ratio of 30% grouting satisfies the required strength within 7 days and satisfies the optimum gel time. As a result of the laboratory test with granite weathered soil, the reinforcing effect was confirmed to be 1.5 times as compared with the gravity type at an injection time of 10 seconds and a strain of 15%. The friction resistance increases linearly with the increase of the injection time, but it is confirmed that the friction resistance decreases due to the hydraulic fracturing effect at the injection time exceeding the limit injection pressure. Numerical analysis was performed to compare the stability of slopes not reinforced with slopes reinforced with gravity and pressurized soil nailing.

Experimental Study to Evaluate Thermal and Mechanical Behaviors of Frozen Soils according to Organic Contents (유기물 함유량에 따른 동토 시료의 열적·역학적 거동 평가를 위한 실험적 연구)

  • Sangyeong Park;Hyeontae Park;Hangseok Choi;YoungSeok Kim;Sewon Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.23 no.2
    • /
    • pp.53-62
    • /
    • 2024
  • Recently, development of non-traditional energy such as oil sands has been actively conducted in the cold region such as Canada. Frozen soil has different thermal and mechanical characteristics from general soil due to its high organic contents. This study evaluated the impact of organic matter content on the thermal and mechanical behavior of frozen soil samples collected from Alberta, Canada, and Gangwon Province, South Korea. As the organic content increases, the maximum dry unit weight decreases and the optimum moisture content increases in compaction tests. In uniaxial compression tests under frozen conditions, the strength of the frozen specimens increased as the temperature decreased. The strength of Canada soil sample increased with higher organic matter content at low temperatures. However, the strength of frozen soil was not significantly affected by organic matter content due to the complex behavior and unfrozen water content. Thermal conductivity tests showed higher thermal conductivity in frozen conditions compared to unfrozen conditions, due to the higher thermal conductivity of ice compared to water. These findings provide essential data for geotechnical design and construction in large-scale projects such as oil sands development in cold regions. Further research is needed to explore the impact of organic matter content on different types of frozen soils.