• 제목/요약/키워드: uniaxial compression strength

검색결과 318건 처리시간 0.028초

고강도 콘크리트의 일축 및 이축 압축하의 파괴거동 (Failure Behavior of High Strength Concrete under Uniaxial and Biaxial Compression)

  • 이상근;송영철
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제6권1호
    • /
    • pp.223-231
    • /
    • 2002
  • The pilot tests for the development of biaxial failure envelope of high strength concrete of reactor containments were performed. To apply biaxial loads to concrete, the plate specimens were used. The technical difficulties encountered on the development of a suitable biaxial test setup were discussed. To decide the optimum thickness of plate specimen, the nonlinear finite element analyses using ABAQUS were performed for a 1/8 model of cylindrical specimen(${\Phi}150{\times}300$) and four 1/4 models of plate Specimens ($200{\times}200{\times}T$(=30, 50, 60, 70)mm) under uniaxial compression. Analytical values and test data of relative strength ratio between those specimens with different geometric shapes were also compared. The various test data were obtained under uniaxial compression, uniaxial tension, and biaxial compression and then the stress-strain responses were plotted. The test data indicated that the strength of concrete under biaxial compression, $f_1/f_2=-1/-1$, is 15 percent larger than that under uniaxial compression and the poisson's ratio of concrete is 0.16. Teflon pads employed to eliminate friction between test specimen and loading platens showed an excellent effect under biaxial compression.

1축 및 2축 압축을 받는 고강도콘크리트 및 강섬유보강 고강도콘크리트의 거동 (Behavior of Plain and Steel Fiber Reinforced High Strengh Concrete Under Uniaxial and Biaxial Compression)

  • 임동환;박성환
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 추계 학술발표회 제17권2호
    • /
    • pp.5-8
    • /
    • 2005
  • The purpose of this study is to investigate the mechanical characteristics of plain and steel fiber high strength concrete under uniaxial and biaxial loading condition. A number of plain and steel fiber high strength concrete cubes having 28 days compressive strength of 82.7Mpa (12,000psi) were made and tested. Four principal compression stress ratios, and four fiber concentrations were selected as major test variables. From test results, it is shown that confinement stress in minor stress direction has pronounced effect on the strength and deformational behavior. Both of the stiffness and ultimate strength of the plain and fiber high strength concrete increased. The maximum increase of ultimate strength occurred at biaxial stress ratio of 0.5 in the plain high strength concrete and the value were recorded 30 percent over than the strength under uniaxial condition. The failure modes of plain high strength concrete under uniaxial compression were shown as splitting type of failure but steel fiber concrete specimens under biaxial condition showed shear type failure.

  • PDF

양생조건에 따른 SSG공법의 일축압축강도 평가 (Evaluation on Uniaxial Compression Strength of SSG Method with Curing Condition)

  • 최용성;김병일;문인종;허준
    • 한국산학기술학회논문지
    • /
    • 제17권2호
    • /
    • pp.15-20
    • /
    • 2016
  • 좁은 면적을 단기간에 개량시킬 수 있는 장점이 있는 그라우팅 공법은 지반의 특성과 지하수위 등에 따라 주입 효과의 차이가 있다. 특히 투수성이 큰 지반에서는 시간 경과에 따라서 용탈현상이 발생하여 강도저하 및 차수 성능이 저하되어 품질에 문제가 생길 수 있다. 최근 이와 같은 문제점을 해결하기 위해 초기강도 확보 및 용탈 방지와 동시에 균열 자기치유 특성을 가지는 SSG가 개발되었다. 이 연구에서는 두 가지 양생조건에 대해 SSG의 일축압축강도 시험을 수행하여 양생기간에 따른 일축압축 강도를 파악하였다. 또한 SSG와 기존의 LW 및 SGR의 일축압축강도와 비교하였다. 연구 결과, SSG가 상온 양생 및 저온 양생 모두에서 강도가 크게 측정되었으며, 초기 강도도 상대적으로 매우 우수한 것으로 나타났다.

실내실험을 통한 핵석지반의 강도정수 산정연구 (Laboratory experiment on the assessment of the ground strength with corestone)

  • 이수곤;김동은;황의성
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2003년도 봄 학술발표회 논문집
    • /
    • pp.95-102
    • /
    • 2003
  • Corestone rock mass has complex characters because it is made up of stronger and stiffer corestone in a weaker and softer matrix. Physical model corestone rock mass made up of stiffer corestone in weaker matrix were tested in uniaxial compression and numercal modelling analysis The result of the uniaxial compression tests showed that increasing the corestone proportion generally increased the modulus of deformation. And the strength decreased in the lower corestone proportion, but it increased in the higher proportion(45%, 65% corestone by volume). The strength and the modulus of deformation were not affected by different size coretone on the same proportion. The result of the numerical modelling analysis showed similar trend compared with the result of the result of the uniaxial compression test. But though the result of th uniaxial compression test is similar to the result of the numerical modelling analysis, it's unreasonalble to apply the results of this paper to in situ corestone rock mass. So mere laboratory tests including triaxial test and the other numerical program analyses are necessary to apply the results to in situ corestone mass

  • PDF

이축 하중을 받는 콘크리트의 응력-변형률 응답 및 파괴 (Stress-Strain Response and Fracture of a Plain Concrete in Biaxial Loading)

  • 이상근;송영철;권용길;한상훈
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 봄 학술발표회 논문집
    • /
    • pp.921-926
    • /
    • 2001
  • In this paper the biaxial failure criteria and stress-strain response for plain concrete are studied under uniaxial and biaxial stress(compression-compression, compression-tension, and tension-tension combined stress). The concrete specimens of a square plate type are used for uniaxial and biaxial loading. The experimental data indicate that the strength of concrete under biaxial compression, f2/fl=-l/-1, is 17 percent larger than under uniaxial compression and the poisson's ratio of concrete is 0.1745. On the base of the results, a biaxial failure envelope for plain concrete that the uniaxial strength is 398kgf/$cm^{2}$ are developed. The biaxial failure behaviors for three biaxial loading areas are also plotted respectively. In addition, the characteristics of stress-strain response under biaxial compression are compared and verified with the experimental and analytical results.

  • PDF

A numerical study on anisotropic strength of a rock containing fractures under uniaxial compression condition

  • Ohk Jin-Wook;Moon Hyun-Koo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 한국지구물리탐사학회 2003년도 Proceedings of the international symposium on the fusion technology
    • /
    • pp.150-155
    • /
    • 2003
  • Fractures in the form of micro cracks are commonly found in natural rocks. A rock behaves in a complex way due to fracture; in particular, the anisotropic strength of a rock material is significantly influenced by the presence of these fractures. Therefore, it is essential to understand the failure mechanism of a fractured rock. In this study, a fractured rock is formulated in terms of fabric tensor based on geometric and mechanical simplifications. In this way, position, density and shape of fractures can be determined by the fabric tensor so that rocks containing multi-fractures can successfully be modeled. Also an index to evaluate the degree of anisotropy of a fractured rock is proposed. Hence, anisotropic strength of a rock containing fractures under uniaxial compression condition is estimated through a series of numerical analyses for the multi-fractured model. Numerical investigations are carried out by varying the fracture angle from $0^{\circ}\;to\;90^{\circ}$ and relationship between uniaxial compression strength and the degree of anisotropy is investigated. By comparing anisotropic strength of numerical analysis with analytic solution, this study attempts to understand the failure mechanism of rock containing fractures.

  • PDF

암석의 성인별 한계변형률 특성에 관한 연구 (A study on critical strain properties of intact rock due to Petrogenesis)

  • 김영수;박시현;김대만;신지섭;한희수
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2009년도 춘계 학술발표회
    • /
    • pp.1133-1138
    • /
    • 2009
  • This study was conducted in order to know the internal application of the critical strain graph. To evaluate critical strain graph, we carried out an uniaxial compression test with some of internal rocks: sandstone, shale, weathered granite, and pink granitic. Based on the uniaxial compression test, we deduced relations among critical strain, failure strain, uniaxial compression strength and modulus of elasticity. As a result, the study has found out the rocks, which have been tested, can be possibly evaluated by critical strain graph.

  • PDF

Study of cracks in compressed concrete specimens with a notch and two neighboring holes

  • Vahab, Sarfarazi;Kaveh, Asgari;Shirin, Jahanmiri;Mohammad Fatehi, Marji;Alireza Mohammadi, Khachakini
    • Advances in concrete construction
    • /
    • 제14권5호
    • /
    • pp.317-330
    • /
    • 2022
  • This paper investigated computationally and experimentally the interaction here between a notch as well as a micropore under uniaxial compression. Brazilian tensile strength, uniaxial tensile strength, as well as biaxial tensile strength are used to calibrate PFC2d at first. Then, uniaxial compression test was conducted which they included internal notch and micro pore. Experimental and numerical building of 9 models including notch and micro pore were conducted. Model dimensions of models are 10 cm × 10 cm × 5 cm. Joint length was 2 cm. Joints angles were 30°, 45° and 60°. The position of micro pore for all joint angles was 2cm upper than top of the joint, 2 cm upper than middle of joint and 2 cm upper than the joint lower tip, discreetly. The numerical model's dimensions were 5.4 cm × 10.8 cm. The fractures were 2 cm in length and had angularities of 30, 45, and 60 degrees. The pore had a diameter of 1 cm and was located at the top of the notch, 2 cm above the top, 2 cm above the middle, and 2 cm above the bottom tip of the joint. The uniaxial compression strength of the model material was 10 MPa. The local damping ratio was 0.7. At 0.016 mm per second, it loaded. The results show that failure pattern affects uniaxial compressive strength whereas notch orientation and pore condition impact failure pattern. From the notch tips, a two-wing fracture spreads almost parallel to the usual load until it unites with the sample edge. Additionally, two wing fractures start at the hole. Both of these cracks join the sample edge and one of them joins the notch. The number of wing cracks increased as the joint angle rose. There aren't many AE effects in the early phases of loading, but they quickly build up until the applied stress reaches its maximum. Each stress decrease was also followed by several AE effects. By raising the joint angularities from 30° to 60°, uniaxial strength was reduced. The failure strengths in both the numerical simulation and the actual test are quite similar.

An effective proposal for strength evaluation of steel plates randomly corroded on both sides under uniaxial compression

  • Khedmati, Mohammad Reza;Nouri, Zorareh Hadj Mohammad Esmaeil;Roshanali, Mohammad Mahdi
    • Steel and Composite Structures
    • /
    • 제11권3호
    • /
    • pp.183-205
    • /
    • 2011
  • This paper presents the results of an investigation into the post-buckling behaviour and ultimate strength of imperfect corroded steel plates used in ship and other marine-related structures. A series of elastic-plastic large deflection finite element analyses is performed on randomly corroded steel plates. The effects of general corrosion on both sides of the plates are introduced into the finite element models using a random thickness surface model. The effects on plate compressive strength as a result of parametric variation of the corroded surface geometry are evaluated. A proposal on the effective thickness is concluded in order to estimate the ultimate strength and explore the post-buckling behaviour of randomly corroded steel plates under uniaxial compression.

고로슬래그미분말 및 하수슬러지를 혼입한 시멘트계 저강도 재료의 기초적 물성 (Fundamental Properties of Controlled Low Strength Materials Mixed Blast Furnace Slag and Sewage Sludge)

  • 김동훈;박신;임남기
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2015년도 추계 학술논문 발표대회
    • /
    • pp.53-54
    • /
    • 2015
  • As the result of uniaxial compression strength test on the CLMS mixing BFS and SS with BFS 4000, it required to determine the desired strength through increasing unit quantity of cement in mixing process because of dramatic strength deterioration of strength according to increasing replacing rate. In this study's result, regardless of differences in fine aggregates used, in order to get uniaxial compression strength in the scope exceeding criteria of minimum strength for applying to the field, the most reasonable combination was to mix replacing BFS with fineness of 6000 in 30%. For the CLMS mixing BFS and SS, in order to improve flow ability by securing quantity of minimum unit and to repress bleeding rate with securing uniaxial compress strength considering the field applicability, regardless of differences in fine aggregates used, to mix BFS over 6000 in 30% was most effective.

  • PDF